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ABSTRACT

Speech pitch detection remains a fundamental problem due

to importance in numerous aspects of speech processing.
Current pitch detectors focus on determining the Glottal

Closure Instant (GCI). Accurate GCI measures can be ob-

tained from the Di�erentiated Electroglottograph (DEGG)
signal. Unfortunately, DEGG signals are not available in

most practical applications. A novel method of pitch de-

tection is proposed here based on the nonlinear estimation
of DEGG signals from the acoustic speech waveform. This

method requires the DEGG signals only during optimization.

In operation, the proposed pitch detector marks glottal clo-
sures based strictly on the acoustical speech waveform. In

addition to the algorithm development, performance com-

parison results are presented.

1. INTRODUCTION

Pitch detection is an open fundamental problem in speech

processing. This problem remains prominent because of its

impact on other aspects of speech processing. The determi-
nation of pitch periods is confounded by their wide range.

Not only do pitch period durations vary from speaker to

speaker, but individual speakers vary pitch period durations
according to pronunciation, emotion, and prosodic content.

Consequently, as of yet, no pitch detection method exists

that performs adequately over the required range of speak-
ers and operating environments.

Recently developed pitch detectors have focused on deter-

mining the Glottal Closure Instant1 (GCI). Such pitch de-

tectors are referred to as event (glottal closing) based pitch
detectors [1, 4, 6]. Although GCI event detectors have proved

more e�ective at estimating pitch periods than classical

methods, no completely satisfactory event detector method

has yet been developed. One problem common to event de-

tectors is determining an e�ective GCI indicator function.

Current GCI indicator functions often produce many false

alarms, resulting in numerous potential GCIs, or misses, re-

1While glottal closure is a complex process, we take a simpli�ed

approach here and assume a speci�c instant can be identi�ed as

the time that the glottis closes.

sulting in missed GCIs and voiced sections of speech being
classi�ed as unvoiced. In contrast, a very accurate GCI indi-

cator signal can be obtained with the use of an electroglot-
tograph (EGG) [7]. The di�erentiated EGG (DEGG) marks

the GCI with a sharp peak, allowing for simple determina-

tion of the GCI. The practical utility of the EGG, however,
is limited since it requires the recording of a second chan-

nel. This restricts the use of the actual EGG signal to the

laboratory, where individuals can be monitored.

In this paper we develop a method for estimating the DEGG
signal from the acoustic waveform. Since the DEGG and

acoustic signals are nonlinearly related, a nonlinear �ltering

approach must be employed. The �ltering method proposed
here is based on order statistics. This nonlinear estimation

approach requires that the DEGG signal be available only

during the optimization process. Once optimized, only the
acoustic signal is needed.

2. EGG BASED PITCH DETECTION

2.1. Direct Use of EGG Signals

The EGGmeasures the impedance across an individuals glot-

tis by placing pickups on either side of the throat at the level

of the glottis. The recorded EGG has large shifts in bias
which do not contain information on the GCIs. This sig-

nal must therefore be high-pass �ltered to eliminate the bias

shifts, leaving only the high-frequency, information bearing
signal. Typically, a simple di�erentiator is su�cient for ex-

tracting the desired signal. The resulting DEGG signal, after

appropriate phase shifting, marks the GCIs with sharp sig-
nal peaks, Fig. 1. The positive peeks in the DEGG clearly

mark the GCIs. To di�erentiate between voiced and un-

voiced speech, the DEGG can be thresholded. An appropri-
ate threshold can be found as a function of the DEGG level

observed during silence. For voiced sections, the speech can

be broken up into frames (frames of 15 msec. were used here),
and local peaks within the frames determined. These local

peaks represent the GCIs. For continuity sake, the GCIs

are marked in the speech as the nearest positive going zero
crossing to the time indicated by the DEGG peaks.



Figure 1: Example of recorded speech (middle) and DEGG

(bottom) signals. The GCIs determined from the DEGG
signal are marked by arrows at the top of the �gure. Markers

without arrow heads indicate unvoiced frames.

2.2. Estimation of DEGG Signals

Although direct use of EGG signals results in accurate local-

ization of GCIs, the recording of the EGG channel is often

impractical. We therefore propose a scheme that utilizes
the EGG signal only during optimization. A diagram of the

proposed pitch detector is shown in Fig. 2. During the opti-

mization, the nonlinear �lter is adaptively optimized based
on the speech input and the true EGG. In operation, only

the speech input is used and the GCI is determined from the
estimated DEGG signal.

Nonlinear
Filter

Pitch
ExtractorSpeech

EGG

DEGG
Estimate

Pitch
Information

+
+

-
Estimate Error

Differentiator DEGG

Figure 2: Block diagram of proposed pitch tracker.

The nonlinear nature of both speech and EGG signals neces-

sitates the use of nonlinear techniques, such as those based
on amplitude [3, 5]. Here, we focus on rank as an indicator

of amplitude. The reliance on rank has inherent advantages

in that it allows the processing of signals at di�erent scales
without the need for normalization. Proper normalization is

often problematic, especially for short data sets.

To estimate the DEGG, we propose a modi�ed L-` �lter. The

L-` �lter [9] weights each observation sample according to its

temporal and rank index. Thus let x = [x1; x2; : : : ; xN ]
T be

the (temporally) ordered input samples at a given instant.

Let x(1) � x(2) � � � � � x(N) denote the rank ordered samples
and ri be the rank of the ith temporal sample, i.e., xi � x(ri).

The L-` �ltering operation can now be written as

F (x) =

NX
i=1

wi;ri
xi = w

T ~x; (1)

where ~x = [~x1;1; : : : ; ~x1;N ; ~x2;1; : : : ; ~xN;N ]
T is the expanded

observation vector, w = [w1;1; w1;2; : : : ; wN;N ]
T is the weight

vector, and

~xi;j =

�
xi if ri = j

0 else
(2)

is the interleaving operation.

The standard L-` �lter formulation applies a tap weight to

each input sample. The weight applied to each sample is
a function of the sample rank. Thus, the weighted sample

wi;ri
xi lies on one of N lines depending on which weight

wi;1; wi;2; : : : ; wi;N is used. Note that each line is restricted
to pass through the origin. This restriction can cause discon-

tinuities as samples change ranks. This restriction is easily
lifted by associating a bias with each weight.

Note that in an L-` structure, it is often not necessary to
know the exact rank of each sample. It is often su�cient to

simply know what region of the ordered set each sample lies
in. Moreover, it may be more important to know if a sample

lies in certain rank regions, e.g., the extremes, than others.

The regions, therefore, may be nonuniform. This partition-
ing of the ranks can be accomplished through coloring [2],

which is a method for quantizing (temporal or rank) order

information.

To split the ranks into M ranges, de�ne the N integer ele-
ment vector q = [q(1); : : : ; q(N)]T , where 1 = q(1) � � � � �

q(N) = M . The term q(ri) gives the rank range that xi
lies in. E�ectively, we have quantized (or colored) the ranks
to M values. The observation vector can now be expanded

to include the knowledge of which rank range each sample

lies in, ~x = [~x1;1; : : : ; ~x1;M ; ~x2;1; : : : ; ~xN;M ]T ; where now the
interleaving is de�ned by

~xi;j =

�
xi if q(ri) = j

0 else
: (3)

Given these de�nitions, the estimate can be expressed

as F (x) =
P

N

i=1
wi;q(ri)xi = wT ~x; where w =

[w1;1; w1;2; : : : ; wN;M ]T . Note that as in the previous case, a
bias can be associated with each weight resulting in F (x) =P

N

i=1
wi;q(ri)xi + bi;q(ri).

The �ltering operation is thus a function of the �lter weights,
w, and the rank quantization vector q. Due to their non-

linear coupling, the joint optimization of w and q is not

tractable. Therefore, a suboptimal two step recursive ap-

proach is taken. This approach is based on the fact that

given q, the estimate is a linear function of w that can be

optimized in a MSE sense. To optimize q, a progressive par-

titioning method is used, which requires the following def-

initions. Since the elements of q are integers that increase

monotonically from 1 toM , q can be represented by its tran-
sition points. Let s1; : : : ; sM�1 be the transition points, i.e.,

q(sj � 1) = q(sj) � 1 for j = 1; : : : ;M � 1. Set s0 = 1 and

sM = N , and write s(M) = [s0; : : : ; sM ].

Each of the M rank ranges represented by s(M) can be split
to produce a M+1 range partition. This generates M possi-

ble M +1 rank range partitions, si(M + 1) = [si0; : : : ; s
i

M+1]



where

s
i

j =

(
sj if j < i

round((sj + sj�1)=2) if j = i

sj�1 if j > i

: (4)

Given the initialization k = 2 and starting partition s(1) =
[1;N ], the �lter optimization proceeds as follows:

1. Generate si(k), wi (optimal weight matrix given si(k))

and the residual estimate error ei for i = 1; : : : ; k � 1.

2. Set s(k) = smin(k) and w = wmin where min is the

index satisfying emin
� ei for i = 1; 2; : : : ; k � 1.

3. If k = M stop. Else increment k and go to 1.

Rather than using a hard stop, information criteria can be
used to set the number of partition. In the next section,

we employ the AIC [8] to determine an optimal number of

partitions.

3. RESULTS

The results presented here are for speech sample at 16 kHz.

The proposed method and that based on wavelet decomposi-

tion [6] are compared using GCIs determined with direct use
of EGG signals as a reference. Under the proposed method,

the speech signal is down-sampled prior to DEGG estima-

tion. Several down-sampling ratios and �lter window sizes
are investigated.
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Figure 3: Estimation error as a function of the number of

rank ranges (quantization values) for various window sizes.

Consider �rst the �lter optimization results. Figure 3 shows

the estimation MSE as a function of the number of rank

ranges. Results are shown for several window sizes in the

down-sampling by two case. The curve for each window size

is terminated at the point where the AIC (dashed line in

plot) increases. Note that a substantial decrease in error re-

sults after only a few rank ranges are added. Figure 4 shows

the optimization produced partitioning for the �rst six steps

of window size N = 51 case. Note that the extreme ranks

are more �nely quantized than the central ranks. Thus, the
extremes of the ordered set provide the most valuable infor-

mation. The optimization produced weight and bias values
are plotted in Fig. 5. An examination of the weights reveals

that those corresponding to the extreme rank ranges have

the most variation. In fact, the weights have the structure of
a di�erentiator, where the level of di�erentiation is controlled

by the rank ranges. Similar partition and weight structures

were observed for all sampling rates and window sizes. Thus,
the �lter can be intuitively interpreted as di�erentiating the

input speech signal when the center of the observation win-

dow contains samples that are in the extremes of the ordered
set. This results in a sharp peak in the �lter output at the

GCI.
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Figure 4: For N = 51 the �rst 6 splitting partitions gener-

ated during the optimization.
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Figure 5: For N = 51 the �lter tap weights (top) and biases

(bottom) generated during the optimization. The optimiza-

tion resulted in 29 rank bins, with each window location

having a unique weight and bias for each bin.

To evaluate the e�ectiveness of determining GCIs from esti-

mated DEGG signals, two male speakers were recorded (both

audio and EEG) speaking the following \My Grandfather"

paragraph:



Speaker #1 Speaker #2

Method/SR Time Matches Insertions Deletions Time Matches Insertions Deletions

Wavelet 222.4 94.88 7.35 5.12 203.6 86.39 13.10 13.61

Est. DEGG (8K) 84.5 96.69 10.91 3.31 72.8 93.82 10.74 6.18

Est. DEGG (4K) 46.5 96.23 8.37 3.77 42.6 91.92 6.49 8.08

Est. DEGG (2K) 27.0 95.95 7.57 4.05 21.9 93.75 6.52 6.25

Table 1: The required processing time (seconds) and the percentage of matches, insertions, and deletions for GCIs deter-
mined by the wavelet and estimated DEGG methods. The estimation �lter utilize 101 observation samples and 10 rank

ranges. Three down-sampling ratios were investigated.

You wished to know all about my grandfather. Well, he is
nearly ninety-three years old; he dresses himself in an an-

cient black frock coat, usually minus several buttons; yet he

still thinks as swiftly as ever. A long 
owing beard clings to
his chin, giving those who observe him a pronounced feeling

of the utmost respect. When he speaks, his voice is just a

bit cracked and quivers a tri
e. Twice each day he plays
skillfully and with zest upon our small organ. Except in

the winter when the ooze or snow or ice prevents, he slowly

takes a short walk in the open air each day. We have often
urged him to walk more and smoke less, but he always an-

swers, \Banana oil!" Grandfather likes to be modern in his

language.

The estimation method was optimized using the second
speaker. The GCIs were estimated for both speakers using

the true and estimated DEGG signals, as well as the wavelet

based [6] approach. Using the GCIs determined from the
recorded EEG as a benchmark, Table 1 reports the percent-

age of GCI matches, insertions, deletions, as well as process-

ing time. Note that the estimated DEGG method produces
slightly better results and requires signi�cantly less process-

ing time. The computational savings arise from the fact that

the estimation �lter, after sorting, is linear. The ranking pro-
cessed adds only O(lnN) operations since samples are taken

in serially.

The results indicate that further development of optimized

pitch detectors is warranted and that the DEGG is one pos-
sible source for a \training" signal. This approach may be

particularly useful for single user or adverse condition sys-

tems, such as a noisy environment or a dysarthric talker.
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