
Table 2. Proportions of [r] tokens from each DSD subject
and grouped Normal subjects assigned to each for the /r/
types based on clustering.
Sub C1 C2 C3
s01 0.2131148 0.13114754 0.6557377
s02 0.5849057 0.01886792 0.3962264
s03 0.1071429 0.48214286 0.4107143
s04 0.2545455 0.10909091 0.6363636
s05 0.3272727 0.23636364 0.4363636
s06 0.2982456 0.21052632 0.4912281
s07 0.5294118 0.11764706 0.3529412
s08 0.1860465 0.25581395 0.5581395
s09 0.2786885 0.11475410 0.6065574
s10 0.1600000 0.18000000 0.6600000
s11 0.6000000 0.04000000 0.3600000
s12 0.3050847 0.16949153 0.5254237
s13 0.5714286 0.16666667 0.2619048
s14 0.1929825 0.33333333 0.4736842
s15 0.3571429 0.28571429 0.3571429
s16 0.1041667 0.54166667 0.3541667
s17 0.3214286 0.07142857 0.6071429
s18 0.3333333 0.07936508 0.5873016
nor 0.6107030 0.25498426 0.1343127
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A novel approach to classifying children with developmental speech delays (DSD) involving /r/ was developed. The approach first
derives an acoustic classification of /r/ tokens based on their forced Viterbi alignment to a five-state Hidden Markov Model (HMM) of
normally articulated /r/. Children with DSD are then classified in terms of the proportion of their /r/ productions that fall into each broad
acoustic class. This approach was evaluated using 953 examples of /r/ as produced by 18 DSD children and an approximately equal
number of /r/ tokens produced by a much larger number of normally articulating children. The acoustic classification identified three
broad categories of /r/ that differed substantially in how they aligned to the normal speech /r/ HMM. Additionally, these categories tended
to partition tokens uttered by DSD children from those uttered by normally articulating children. Similarities among the DSD children and
average normal child measured in terms of the proportion of their /r/ productions that fell into each of the three broad acoustic categories
were used to perform a hierarchical clustering. This clustering revealed groupings of DSD children who tended to approach /r/ production
in one of several acoustically distinct manners.

Traditionally, analysis of children’s speech for phonetic and research purposes, including research
related to speech disorders, has involved relatively labor-intensive procedures applied to relatively small
datasets (e.g., [1-4]). The labor intensiveness of these techniques renders them impractical for use with
very large datasets. We describe here a pilot study employing techniques that will scale well to very large
datasets. Applications of this and related techniques include improved diagnostic procedures, new
quantitative procedures for tracking progress in therapy, and acoustic phenotyping for studies of the
genetic origins of spoken language and speech disorders [4].

METHODS

Subjects. Normally articulating children were 208 children six to eight years. Each child recorded 100
primarily multi-syllabic words as part of an effort to develop a normative speech database for young
children. All children were reported by their parents to be normally developing with no history of hearing
or speech disorders. The speech delayed talkers were 18 children from 56 to 94 months of age who
participated in a software speech training evaluation study (Bunnell, Walter, et al., in preparation). All of
these children failed to produce age-appropriate /r/ in word-initial position and received a half-hour
speech therapy session with a certified Speech-Language Pathologist once a week during the six-week
evaluation study to address this issue. Additionally, all children received three half-hour sessions each
week using a computer-based speech-training program [5,6]. Ten of the DSD children received drill from
the speech-training program related to initial /r/ production, while the remaining eight children used the
speech training program to drill production of /k/, a segment that all children correctly produced.

Stimuli. Speech stimuli for this study were a set of 1909 single-word utterances containing utterance
initial /r/ followed by a variety of vowels. 953 of these utterances were drawn from the private database of
speech from 6-year-old to 8-year-old normally speaking children and were quite diverse in structure. The
remaining 956 utterances were drawn from recordings of probe words made by DSD children. Before
starting each computer-based training session, and again after completing each training session, another
program was run on the computer to probe the child’s progress using a set of 36 words that sampled a
variety of segments of interest in a variety of syllabic and phonetic contexts. For each probe word, the
child was both presented with a picture on the computer screen and heard a recorded prompt to model.
Recordings of the /r/-initial words from this probe set comprise the dataset that has been used for this
study. This set of utterances was less diverse than that of the normally articulating children, consisting of
only the four words (rich, rug, ribbon, and rooster).

Procedure. Each word was automatically labeled at the phonetic level using a version of our SR engine
with models that had been trained on the complete normally articulating children’s speech database
(approximately 18,000 tokens). This was achieved using a “forced recognition” process in which the
known phonetic transcription of each utterance was fitted to the parameterized utterance acoustics and
analyzed to determine where phoneme HMM boundaries were assigned relative to the utterance. Figure
1 shows the result of this process for one utterance, the word red. In this figure, phoneme regions are
shown, bounded by initial and final boundary markers. Phoneme identities are indicated using a two-
character phoneme code (00 is the code for silence) followed by a two-digit sequence number.

Following the assignment of labels based on a global segmentation, the initial /r/ segment in each
utterance was characterized in terms of the details of the alignment of the /r/ HMM to the acoustic
speech data. Referring to Figure 2, which illustrates a 3-state HMM, each model describes the acoustics
of a phoneme in terms of a series of states that can be thought of as generating acoustic “observations”
or analysis frames, with each analysis frame assigned to a specific model state. Each state is
characterized by a set of observation probabilities that indicate the probability of emitting a particular
acoustic observation when in that state, and a set of transition probabilities indicating the probability of
remaining in that state, moving to the next state, or skipping the next state.

Figure 1. Waveform and spectrogram display of the word red with correctly
articulated /r/. The top half of the figure shows the speech waveform and the
bottom half the speech spectrogram. The phonetic segmentation markers
RR01, EH02, etc. were placed automatically by HMM alignment.

The /r/ HMM used in this analysis was a five-state model with state skipping allowed. Thus, while every
analysis frame within the /r/ region of the speech signal was assigned to a single model state, some
states may have been skipped and consequently not aligned to any analysis frame. Nonetheless, the
alignment structure of the HMM to the speech acoustics allows one to describe the complete /r/ segment,
regardless of its duration or other acoustic properties in terms of a fixed set of parameters. Specifically,
for these analyses, we recorded (a) the total segment log likelihood, (b) the number of frames associated
with each model state, and (c) the state-wise log likelihood. Thus, for each /r/, 11 data points were
obtained. This by-token data provided a means of determining patterns that are common in the /r/
productions of all talkers as characterized by the HMM parameters.

Analysis. A k-means clustering program [7] was used to cluster the 1909 /r/ tokens on the basis of the 11
data points obtained for each /r/. Hierarchical clustering with complete linkage was then used to classify
talkers based on the distribution of their /r/ productions over the /r/ classes.

S1 S2 S3

/x/

Figure 2. Three-state HMM for phoneme /x/.

Three clusters were found to provide a natural partitioning of the /r/ token data (Table 1). The first and
largest cluster that contained 879 tokens contained predominantly (66.2%) /r/ tokens produced by normal
talkers. The second and smallest cluster contained a more nearly even distribution of normal and
disordered children’s /r/ tokens. The third cluster was predominantly (78.7%) populated with /r/ tokens
from children with speech disorders. All tokens in Cluster 1 had two of the five /r/ states skipped (states 3
and 5). Elements in Cluster 2 contained no skipped states and tokens in Cluster 3 contained 1 skipped
state (state 5). The probability of observing data so distributed on the basis of chance is extremely
remote (χ2 = 297 with 2 degrees of freedom p < .001).
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Figure 3. Dendrogram from
clustering of individual.

Data for individual children in the disordered speech group and for the normal children as a single group
were expressed as the relative frequency of /r/ tokens in each cluster (see Table 2), and these data were
submitted to hierarchical clustering [8] to characterize the relationships among the 19 talkers (18
disordered talkers and one composite normal speaker). Figure 3 shows the dendrogram resulting from
this clustering. In this figure, the level at which individual subjects or groups of subjects are joined by
horizontal lines is a measure of their similarity. The figure reveals several groupings and subgroupings of
disordered talkers. Note for example, a fairly compact grouping of subjects s01, s10, s06, s12, s17, s18,
s04, and s09 and two other groupings involving s02, s11, s07, and s13 in one instance and s05, s15,
s08, and s14 in the other. Members of one pair of disordered talkers (s03 and s16) are quite similar to
one another but distinct from other disordered talkers. The composite normal talker (“nor” in the figure)
does not pair with any of the individual disordered talkers but links with a grouping of disordered talkers
at a moderate level of dissimilarity.

The token clustering identified three categories of /r/
acoustic structure as modeled by HMMs. These
groupings appeared to be primarily based upon the
state skipping characteristics of the fit. While very
coarse, this partitioning of /r/ tokens revealed clear
differences between disordered and normally
articulating talkers with tokens of each talker population
differently distributed across categories. It is to be
expected that this classification of tokens would not
perfectly partition talkers because not every instance of
/r/ uttered by the speech delayed children was
perceptually and acoustically aberrant. Moreover, at this
preliminary stage, it is possible that the normal speaker
data contain labeling and or alignment errors since
these data have not yet been screened.
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Table 1. Distribution of DSD and normally articulating talkers within
each type of /r/ as identified by clustering /r/ state alignment data.

Cluster 1 Cluster 2 Cluster 3 Total
Disordered 297 187 472 956
Normal 582 243 128 953
Total 879 430 600 1909

Our second-order hierarchical clustering of individual talker data provides a concrete example of how we will
posit acoustically based phenotypes among speech-delayed children. The dendrogram in Figure 3 illustrates
the potential power of the proposed approach. We note that a simple dissimilarity threshold would be
adequate to separate our composite normal speaker from any individual disordered talker.

Of course, clustering algorithms necessarily reveal clusters. The crucial question is whether the clusters
convey interesting distinctions among individuals. We have only just begun to examine the relationships
between the clustering solution and DSD children. Children in the largest cluster all presented with /r/ that was
homophonous with /w/ and by the end of the training study all but one still usually produced /r/ in that manner.
Only subject s06 in this group had reached a criterion level of 60% correct /r/ productions by the end of the
project. The two children (s03 and s16) who formed a fairly isolated group were both children who acquired /r/-
like articulations as evidenced by appropriately lowered F3 fairly early in the study but tended to produce very
long and exaggerated /r/ segments that were very unlike normal articulations in temporal structure. Children in
the group (s02, s11, s07, & s13) tended to produce segments that were not homophonous with /w/ and had
an almost fricative or heavily aspirated quality. Thus, the obtained clusters do appear to represent real
differences in the articulatory strategies employed by children in attempting to produce /r/. These data are
limited by the fact that they do not represent a fixed “snapshot” of articulatory strategies, but rather an average
picture of each child’s performance over a period in which several of the children were measurably improving
their articulation.

We feel this approach has several important advantages over other acoustic analysis techniques that have
been applied to speech from young children. In particular, it (a) does not require formant tracking, (b) provides
a global characterization of the segment that does not depend upon decisions regarding where acoustic
measurements are made, (c) requires minimal “hands on” manipulation of the data, and (d) uses differences
in the probability density of acoustic observations rather than differences in the acoustic observations
themselves to classify segments.

This latter point is quite important. A variety of factors such as phonetic and prosodic context, as well as
general talker vocal tract differences influence acoustic segmental structure. These factors can make it
impossible to meaningfully compare segments from diverse environments in acoustic terms. However, the
proposed HMM-based approach compares instances of segments on the basis of the likelihood of observing
specific acoustic forms no matter how different the forms themselves may be. Thus, it is the similar likelihood
of acoustic observations (based on extensive observations of normally articulating children’s speech), not
similar acoustic structure, that matters.
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