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BACKGROUND

The Hearing In Noise Test (HINT) (Nilsson et al. 1994) adaptively
measures speech recognition thresholds (SRTs): the signal-to-noise ratio
(SNR) at which a listener has difficulty recognizing sentences.

* Listener hears 20 sentences embedded in noise and must repeat each
nearly exactly (certain deviations are allowed, e.g. “a” for “the”)

* The SNR of each sentence changes adaptively according to the previous
response (e.g. the SNR is decreased if the listener answers correctly)

* S0 each response must be scored manually before the next sentence can
be presented

Goal: Automate HINT scoring with an utterance verification (UV) engine
* Eliminates the necessity and subjectivity of human scoring

PROTOTYPE UV ENGINE CONSTRUCTION

HINT Seed Corpus

* 25 normal hearing AE speakers * 80 HINT sentences = 2000 utterances
* Collected under simulated HINT conditions
* SNRs varied under a preset schedule to maximize unique errors

UV Engine Design and Training

Figure 1: UV Engine Design
patient

Specific ASR Generic ASR
specific HMMs (50)* generic HMMs (5)
specific LMs generic LM

l Confidence

Initial guess +
specific LL

|

#
h Wt”
"Wrong” s

(specific LL — generic LL
> threshold?

Measure

Specific ASR components (Young, 1993):

1. Acoustic Models

* 10-ms frame rate, 25-ms window size

* 13 MFCCs * 3 = 39D speech vectors

* 50-phoneme monophone HMM set trained on TIMIT (Garofolo et al. 1986)
* Converted to 3-Gaussian triphones, then trained on HINT seed corpus
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UV Engine Design and Training (cont.)

2. Language Models

* One language model for each HINT stimulus sentence

* Consists of a list of actual responses to that sentence from seed corpus
* Each response is labeled “correct” or “incorrect”

Generic ASR components (Young, 1993):

1. Acoustic Models

* 1-Gaussian monophone models trained on TIMIT

* 5 generic models:
+Generic consonant model trained on all TIMIT consonants
+Generic vowel model trained on all TIMIT vowels
¥+3 generic silence models (Start, Mid, End)

2. Language Model
* Simply aligns the 5 generic HMMs to the utterance in any order

Confidence Measure (CM):

Initial CM threshold determined from cross-validation study of seed corpus
* Threshold chosen to minimize errors of UVE when run on seed corpus

* Improved initial accuracy from 91.15% to 93.00%

EVALUATION STUDY

We evaluated the UV engine in a real-world setting, in which the UV engine
controlled the SNR of HINT stimuli to 25 new normal-hearing AE speakers

METHOD:

Each subject's Speech Recognition Threshold was measured 4 times with
the old manual software, and 4 times with the new software incorporating
the UV engine

The UV components were updated after every block of 5 subjects:
* Novel incorrect responses added to language models

* Specific HMMs retrained on all subjects

* Confidence Measure threshold re-estimated from all subjects

RESULTS:

Overall diff in threshold SNRs between human and ASR: 0.775 dB

* This is about half the test-retest reliability of human scorers: 1.5 dB
(Vermiglio 2008)

Figure 2: Mean Measured Threshold SNRs by Block and Method
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RESULTS (cont.):

Mixed model ANOVA:

& Block (1-5) as between-subjects factor, Method (auto vs. manual) as
within-subjects repeated measure

* Main effect of Block: non-significant (F[4,20]=1.35, p=0.286)

* Main effect of Method: non-significant but marginal (F[1,20]=3.88,
p=0.063)

* |Interaction of Block and Method: non-significant (F[4,20]=0.57, p=0.69)

Most of the difference is due to 1 subject in block 3, and 2 subjects in block 4
& Most of this difference is due to the Confidence Measure incorrectly
rejecting correct utterances

POST-HOC IMPROVEMENT OF CONFIDENCE MEASURE

METHOD:

@ Added bigram phoneme recognizer to CM algorithm

¥bigram probabilities from Brown corpus (Kucera and Francis, 1967)
* A new log-likelihood is calculated from the bigram phoneme recognizer
* All LLs and associated parameters used in a logistic regression model
* New cross-validation study run on evaluation study data

RESULTS:
Figure 3: Old and new UV sentence classification accuracies
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& Overall improvement across all blocks
& The decrease in accuracy in blocks 3 and 4 is greatly reduced

CONCLUSIONS

P Our study shows the feasibility of using speech recognition
to automate HINT.

PFHuman/ASR score difference (0.775 dB) is well within
human test-retest difference (1.5 dB)

FImprovement of accuracy is possible by fine-tuning the
parameters of the UV engine.
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