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ABSTRACT

This paper describes a novel method for training a classi-
fier that will perform well after it has been adapted to in-
put speakers. For off-line (batch-mode) adaptation methods
which are based on the transformation of classifier param-
eters, we propose a method for training classifiers. In this
method, the classifier is trained while the adaptation to each
speaker in the training data is being carried out. The objec-
tive function for the training is given based on the recognition
performance obtained by the adapted classifier. The utility
of the proposed training method is demonstrated by experi-
ments in a five-class Japanese vowel pattern recognition task
with speaker adaptation.

1. INTRODUCTION

In speech recognition, adequate recognition performance
shuld be maintained in spite of changes in the input speaker.
To achieve such robustness, several approaches by improv-
ing classifiers have been studied [1]. A conventional way to
obtain robust classifiers is to use a large amount of train-
ing data from as many speakers as possible [2]. In this ap-
proach, although the average performance in speakers can
be improved, the performance of individual speakers is not
necessarily satisfactory. To find a way of achieving higher
recognition performance, the adaptation of the recognizer
to different speakers has been intensively studied [1]. Sev-
eral methods have been proposed concerning adapted pa-
rameters, transformation methods, and optimization criteria
for training the transformation. From among these meth-
ods, off-line (batch-mode) adaptation methods based on the
transformation of classifier parameters have been investi-
gated to persue efficient adaptation with a small amount
of adaptation training data [3, 4]. In this transformation-
based adaptation method, either speaker-dependent or in-
dependent classifiers have been used as the classifier that is
adapted. However, these classifiers are not necessarily opti-
mal with respect to recognition performance after adaptation
is carried out on them. To improve the performance after
adaptation, other types of classifiers have also been investi-
gated [5]. However, due to the lack of a theoretical frame-
work to formalize this situation, we have had to depend on
a heuristic approach to seek better classifiers.

In this paper, we present a framework for optimizing classi-
fiers so as to achieve high performance after adaptation has

been carried out, and propose a training method based on
this framework. In the proposed training method, the classi-
fier is trained while adaptation is being carried out. The ob-
Jective function for the training is given based on the recog-
nition performance obtained by the adapted classifier. The
proposed method makes any optimization criteria, such as
minimum squared error (MSE), maximum likelihood (ML),
minimum classification errors (MCE) or maximum mutual
information (MMI), available for both classifier training and
the adaptation processes. It is also applicable to adaptation
to changes in other input conditions, such as background
noise, room acoustics, or channel noise. In the following sec-
tion, the problem will be formulated so as to handle changes
in these input conditions as well as in the speaker.

2. PROBLEM FORMULATION

We consider the classification of a d-dimensional vector O in
an observation space into one of the K classes {C }&.,, with
adaptation of the classifier to changes in the input conditions
represented by the set of parameters V. This classification
uses the decision rule:

C(O)=Ci if gi(O;F(A,T)) =maxg;(0; F(A,T)), (1)

where C(-) denotes a classification operation, g; is the dis-
criminant function for class C;, A is the set of classifier pa-
rameters, I is the set of parameters of the adaptation trans-
formation, and F(A,T) represents the parameter set of the
classifier obtained through the transformation of A by I'. The
block diagram of this pattern recognizer is shown in Figure 1.
At the stage of adaptation to input condition V, the value
of " is decided by using an adaptation training sample set
extracted under V in an off-line manner. The ultimate goal
here is to achieve discriminant functions that minimize the
probabilities of classification error, given that an adaptation
procedure is performed on these functions.
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Figure 1: Pattern recognizer with adaptation of classifier



The problem of optimizing a conventional pattern classifier,
which is designed independently of the adaptation procedure,
can be formulated as follows:

Zp(ck)/1(gk(o A) # maxgi(0; A))p(0|Ci)dO

k=1
— min, (2)

where P(C}) is the class probability, p(OQ|Cy) is the condi-
tional probability density function, and 1() is an indicator

function:
1(e) = { 0. 3)

The integration is over the entire observation space. Note
that this formulation is for minimizing the expected error
rate when the classifier has not been adapted to the input
conditions.

if a is true
otherwise.

Now, we consider the problem of optimizing the classifier
used in rule (1). The classifier should be optimized so as to
achieve high performance after adaptation has been carried
out. This problem is formulated as follows:

JEG / g P(CiIV)

x [ 1061(0: F(, 1) # max 05 (4, )
xp(O|Cx, V)p(TIA, V)dOdTdV — min.  (4)

Note that because the value of I" is decided in the adaptation
process using extracted adaptation training samples, I' can
be taken as random variables. The conditional probability
density p(I'|A, V) depends on the adaptation procedure used.
Each integration is over the entire space of the corresponding
variable.

3. TRAINING METHOD

We will now describe the method used to train a classifier,
which is used in speaker adaptation, based on formula (4).
In the case of speaker adaptation, we can assume that pa-
rameter V', which represents the input speaker, takes discrete
values (V;,b = 1,2,...). The general scheme for the off-line
adaptation method based on the transformation of classifier
parameters is formulated first, and then the objective func-
tion for the training of a classifier is shown.

3.1. Formulation of Adaptation

In the process of adaptation to input speaker V3, the values
of parameters 'y of the adaptation transformation is deter-
mined using the adaptation training sample set (denoted by
As) extracted from utterances spoken by speaker V;. The
optimum value I‘b of I'y is obtained as follows:

K ™pik

=agmin )| > L(O[).C. FAT),  (5)

k=1 i=1

where my & is the number of samples in class Ck in As, 0,(,’:"‘)

denotes the ith feature vector in them, and ¢, is the loss
function for individual samples, which is used to determined
the value of the transformation parameters for the adapta-
tion. By changing the loss function, (5) can represent any
optimization criteria, such as MSE, ML, MCE, MMI, and
so on. Note that minimization in (5) is often carried out
with some constraints among the parameters of the trans-
formation, such as smoothing, to reduce small-sample-size
effects|6].

3.2. Objective Function for Classifiers

Next, we consider the objective function to be minimized for
training a classifier using the sample set X’ which is composed
of samples extracted from utterances spoken by B speakers.
Each sample has labels for the class that it belongs to and
the speaker whom it is from. The objective function is given
by direct derivation from (4) as

K myk

LiA) = Z / 33 4O, Cu (A, D)p(TIA, Vi),

k=1 i=1 (6)

where ny is the number of samples in class Ci, which is
extracted from utterances spoken by speaker Vi, Oy 1 de-
notes the ith feature vector in the samples, and £ is the loss
function for individual samples. The distribution p(T|A, V3)
here is generally unknown. Taking into account the simul-
taneous training of the distribution p(I'|A,V;), sample sets
As,n,h = 1,..., Hy are prepared as the adaptation sample
sets extracted for each input speaker V;,b = 1,..., B. Then
the objective function is given as

B Hy, K mnbsk

L) =33 3 Y UOsui,Ci, F(ATuR),  (7)

b=1 h=1 k=1 i=1

where
(8
K bk
A
Ton = argmmz Z £.(0 E kb,h) e F(AT)).  (8)
k=1 i=1
0,(,'::':.") is the ith feature vector in class C in the adaptation

training sample set A; 4.

In addition, when the size of the given training sample set for
the adaptation is large enough with regard to the degrees of
freedom in T', the distribution p(T|A, V3) becomes very sharp.
In this case, we assume that the distribution p(T|A, V) is
approximately a delta function, where p(T|A,V;) # 0 at T' =
fz,. Based on this assumption, the value of I'; is determined
by using all samples of speaker V, in X as an adaptation
training sample set. Then the objective function is given as

B K mnok

Ls(A) =)D Y UOsui,Cu, F(A, Ty)), (9)

b=1 k=1 i=1
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Furthermore, when £,(O,Cy, F(A,T)) = €0, Ci, F(A,T)),
by combining (9) and (10) we can obtain the objective func-
tion as

(10)

B K 7ok

Ly(AT) = Z Z zf(ob,k,i, Cx. F(A,Ty)),

b=1 k=1 i=1

where I' = {I'1,...,T'g}.

(11)

We note that all objective functions defined here are empir-
ical average costs and that the minimization is only for the
classification cost incurred in classifying the training sam-
ples. Although generalization should also be considered, we
have used these objective functions with large amounts of
training data as the first step in confirming the validity of
the proposed approach.

3.3. Optimization Method

For the objective functions given in subsection 3.2, a local
or global optimum solution can be obtained by using iter-
ative neighborhood search strategies, such as the gradient
descent method. In addition, for the objective function Lj,
if optimization processes with respect to A and T’ both ex-
hibit global convergence, carrying out both optimization pro-
cesses alternately in an iterative fashion would also exhibit
global convergence. This property becomes effective partic-
ularly in cases where a global solution can be easily found
in each process that is alternately carried out. In the ex-
periments described in the following section, we utilized this
property. Note that this convergence property does not nec-
essarily hold for the objective functions Ly and L3.

4. EXPERIMENTS

To evaluate the proposed training method, we conducted
simple experiments in five-class, fixed-dimensional Japanese
vowel pattern recognition with speaker adaptation, using
classifiers trained based on the objective function L3. Vowel
tokens were extracted from 216 isolated words spoken by
40 speakers (20 males, 20 females) and were digitized (fs
12 KHz). The center fragment of each vowel was selected
using a 32 msec Hamming window and converted into a fea-
ture vector consisting of 16 order LPC cepstral coefficients.
The number of tokens in the whole token set was 26,667. The
classifier consisted of normal distribution functions with di-
agonal covariances as discriminant functions. The classifier
parameter set A is represented as

A={”1~,017"'7/‘”\'7‘71\’}7 (12)

where ux and or respectively denote the mean vector and
the diagonal covariance vector in the discriminant function
for class Ck.

= [k ts o i )T, ok = [0k1,- 00 g]" (13)

where J(= 16) is the number of components in the feature
vector. The superscript © denotes the matrix transposition.
The classifier adaptation to the speaker represented by V;
is carried out by moving all mean vectors through the addi-
tion of the single vector Ty = [y4,1,...,7s,s]T : parameters of
the adaptation transformation. ML and MCE were used as
training criteria in the experiments. In the case of ML, (11)
is written as

B K mpuk

LD =333 [Flos2m) + 3 log(Iel)

b=1 k=1 i=1
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where Iy = diag(aﬁvl,...,ai“,). In the case of MCE, the
objective function is decided by using the smoothed loss
function[7] for the gradient algorithm, which approximately
represents the classification error.

For the optimization of the ML criterion, optimization pro-
cesses with respect to both A and I'(= {Ty,...,I's}) were
carried out alternately in an iterative fashion. In each pro-
cess, the solutions can be obtained using simple equations:
T' in particular was calculated with the following equation,

which can be obtained by setting %ﬁ-_ =0

K
ket —5—,: - Y (08, k0,5 — Mk,5)
¥
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b=1,..,B ,

Yo =

1=1,..,J

where o0y r i,; represents the jth component in the feature
vector Ob,k,i~

In the MCE criterion, the objective function was minimized
by the gradient method with respect to all parameters using
the following adjustment rule:

{A,Thy1 = {A, T} — eVL3(A,T), (16)

where {A,T'}, denotes the parameter set at the tth iteration.
The parameters were adjusted after the entire training set
X was classified. The parameter values obtained in the ML
training were used as the initial values.

As the solution is infinity for this optimization problem,
after all processes were completed, the adaptation vectors
Ty,b = 1,..., B were modified by adding vector r such that
Ef:l I’y = 0. Inversely, the mean vectors in the classifiers
were modified by deleting the same vector r.

In the experiments, for comparison with the classifiers (CP)
obtained by the proposed training methods, speaker inde-



pendent classifiers (CC) were obtained by the conventional
training method based on (2).

The performance of each classifier was evaluated by leave-
one-out testing: each classifier was trained using data from
thirty-nine speakers (B = 39), adaptation was carried out
to the other speaker V,, and error rate was calculated for
open data of speaker V,. Thirty-two feature vectors for each
class, randomly selected from the sample set obtained from
speaker V3, were used as adaptation training data to deter-
mine the value of the parameters of the transformation to
adapt to speaker V;. The adaptation vector 'y was decided
by the same criterion as that by which the classifier had
been trained. The average values of the error rates obtained
in forty trials by changing the adaptation target speaker are
shown in Figure 2.

In Figure 2, the Adapted CC and Adapted CP represent
the CC and CP on which adaptation was carried out. We
can see that the error rates obtained with the Adapted CP
were lower than those obtained with the Adapted CC. The
decrease in the value of the error rate from the CC to the
Adapted CP is, compared with that from the CC to the
Adapted CC, 74% larger in the ML case and 54% larger
in the MCE case. These results confirm the validity of the
proposed method for designing classifiers. We can also see
that, as expected, the CC achieved better performance than
did the CP. This is understandable because the CC was
trained so as to get high performance without adaptation,
whereas the CP was trained so as to get high performance
with adaptation.
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Figure 2: Average error rate in experiments with forty
adaptation target speakers.

In addition, the respective mean and standard deviation of
the difference between the error rates of the Adapted CC
and the Adapted CP for all adaptation target speakers
were 1.25% and 1.71% in the ML training cases, and 1.52%
and 1.96% in the MCE training cases. These values show
that the Adapted CP achieved better performance than

the Adapted CC without large variance by changing the
adaptation target speaker.

5. CONCLUSION

This paper proposed a method for designing a pattern classi-
fier that achieves high performance after off-line transforma-
tion-based adaptation was carried out on it. Experimental
results in a fixed dimensional vowel pattern recognition task
with speaker adaptation clearly demonstrated its validity.

One can apply the proposed method to dynamic (variable-
durational) patterns for practical speech recognition tasks
using the hidden Markov model. It has been reported that
changing the degrees of freedom of the trained transforma-
tion according to the size of adaptation training data leads
to better performance (for example {8]). For such methods,
it might be effective to prepare multiple classifiers trained
according to the size of adaptation training data by the pro-
posed method.

The method presented in this paper is quite general, and
can be widely applied. This paper has described the case in
which classifier parameters are adapted, but the presented
method is also applicable to the case in which the feature
extractor is adapted.
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