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ABSTRACT

Conventional features used in state-of-the-art hidden
Markov model (HMM) based speech recognition systems
are commonly inspired by scientific knowledge and exper-
tise of the human vocal and auditory system. Although
the intent when performing feature analysis is to extract
“relevant” and “discriminative” information from the sig-
nal that is useful for speech recognition, this information
may not be consistent with the objective of minimizing er-
ror rate in the recognition process. In this paper, we utilize
feed-forward artificial neural networks (ANNs) to generate
a new class of features for speech recognition. We propose
a system for integrating the feature extraction process with
the recognition process under a unified statistical framework
with a consistent objective function that is designed to min-
imize recognition error rate. Results on a telephone-based
speaker-independent connected digit task indicate that this
integrated system with 12 ANNs is able to reduce the per
digit error rate by a further 28% over a similar system using
a single ANN and 16% over our previously best results in
which feature transformation was not incorporated.

1. INTRODUCTION

The two basic components of an automatic speech recogni-
tion (ASR) system are feature extraction and speech recog-
nition. Feature extraction includes analyzing the speech
signal and converting it into a set of features, such as cep-
strum and energy. Speech recognition uses stochastic mod-
eling (e.g., HMMs) to convert input features into a set of
meaningful symbols. From the feature side, one desires to
extract a set of coefficients that are invariant to extraneous
environmental conditions and carry all the discriminative
information necessary to perform speech recognition. From
the recognizer side, the objective is to train the model pa-
rameters so that to provide the best possible class discrim-
ination. Although current ASR systems do apply discrimi-
native training techniques for designing the recognizer (e.g.,
[8]). little effort has been done in extending this concept to
designing discriminative features that enhance the interac-
tion process between feature analysis and recognizer design.

In an effort to minimize recognition error rate by enhanc-
ing feature extraction, several studies have incorporated
knowledge of the recognition process during feature design.
For example, Hunt et. al. {7] proposed a linear discrimina-
tive analysis (LDA) method which applies a transformation
matrix to conventional features in order to maximize a suit-
able criterion of class separability. In pattern classification,
several studies such as Katagiri et. al. [9], Biem and Kata-
giri [2], Watanabe et. al. {15] and Paliwal et. al. [11], have
shown improved classification performance when applying
minimum classification error (MCE) training for both fea-
ture and classifier design. In speech recognition, Bengio et.
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Figure 1. Speech recognition system design with feature trans-
formation [12,13].
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Figure 2. Proposed speech recognition system design with

feature transformation.

al. [1], Bridle and Dodd [3] and Euler [6] described sys-
tems that apply discriminative training techniques for both
feature transformation and HMM recognizer design.

In [12, 13], we proposed integrating both feature extrac-
tion and classifier design into a single training process. A
simplified block diagram of the system is shown in Fig. 1.
The integrated system adopted a single ANN with a lin-
ear activation function to conduct feature transformation,
and a set of context-dependent sub-word HMMs to perform
stochastic modeling. Thus training of the integrated system
included adjusting the connection weights and offsets of the
ANN, and the means, variances and mixture gains of the
HMMs. We applied the MCE method for discriminative
training which essentially helped in two ways. One was
to train the parameters of the integrated system simulta-
neously and discriminatively, thus maximizing class sepa-
rability and the other was to provide a forward-backward
interaction between the feature extractor and the recognizer
under a unified objective function.

In this study, we extend the capacity of our integrated
system to enable feature transformation to be performed as



part of the recognition process as shown in Fig. 2. The
intent is to apply a different transformation to each fea-
ture vector depending on the state or the unit model the
vector is assigned to during decoding. Thus class-specific
ANNs are used and trained along with their corresponding
HMMs under a unified framework using the MCE frame-
work. The nature of the ANN transformation proposed in
this study could reflect some of the correlation that may
exist in the empirical cepstral coefficients. This is particu-
larly important since our ASR system adopts diagonal co-
variances, rather than full covariances, when estimating the
observation distributions.

2. STRING-BASED MCE TRAINING

Unlike ML estimation which maximizes a likelihood func-
tion of a sequence of observations given a set of HMMs, in
MCE training [4, 8], the goal is to maximize class separabil-
ity by minimizing the expected recognition error rate over
the entire training data. This has the advantage in helping
to improve the robustness and the generalization property
of the speech recognition system. Although a “class” in
this context may refer to a linguistic or an acoustic unit,
this paper uses this concept to refer to an entire string [4].

Consider a training phase of the system shown in Fig.
2 where the parameters of the feature transformation, ©,
and the stochastic modeling, A, are to be adjusted using a
corpus of P input strings, {O?}. If OF is a sequence of T
frames, OF, 0%, .., O%, that belongs to class string ¢, then
the objective in MCE training is to minimize the expected
value of the class loss function

E[{di(F(0%;©); A)}]. (1

1{-} is a loss function which can have a non-linear activa-
tion, di(-) is a misclassification measure and F(OP;0) is
a transformation which operates on the feature vector se-
quence OP with © as the parameters associated with the
transformation F(-). Minimizing the loss function in Eqn.
(1) is achieved by optimizing any one or all of the quanti-
ties I{-}, di(-), F(-), ©, and/or A. Over the past several
years, much work has been done in optimizing I{-}, di(-),
and O, without imposing any functional transformation on
the features O. In this section, we will consider a general
transform function F(-) and provide mathematical formula-
tion for the MCE method when performing joint estimation
of the parameters associated with this function, i.e., ©, as
well as the stochastic model parameters, A.

There are essentially three steps when performing MCE
training. The first step includes defining the misclassifica-
tion measure in Eqn. (1). In light of the work done by
Katagiri et. al. [9], this measure is written as a generalized
log likelihood ratio of the form

di(F(OP; @) A) = —gi(F(OF; 0); A) + Gi(F(OP; @);A%, )

2
where g;(-) is a discriminant function which is equal to the
average hkelihood, £(-), of the correct class i:

T
g:i(F(OP;0)A) = % Zlog L(F(OF;0)A:).  (3)

And Gi(-) is considered as an anti-discriminant function to
class string ¢ which is computed by averaging the values of
the discriminant functions for the N — 1 competing strings
to
N
G{F(07;0); ) =log [ -5 D exp{ng; (F(070); 1))]
k] I N 1 2 3 3
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where 7 is a positive constant. Competing string classes are
identified using an N-best search [4].

Having computed a value for di(-), the next step is to
define a measure of error count. One possibility is to use a
loss function which is characterized by a smooth 0-1 sigmoid
of the form

1
1+exp{—a-di(F(OP;0);A)+¢€]’
(5)
where a and e are constants which control the slope and the
shift of the smoothing function, respectively.

Based on the criterion set in Eqn. (1), MCE training
involves minimizing the expected value of the loss function
in Eqn. (5) by adjusting the parameters of either A or/and
©. This is the third and final step in MCE training which
effectively maximizes the separation of string ¢ from other
competing strings. Due to the lack of a closed form solution
to this problem, A and © are updated using the generalized
probabilistic descent (GPD) method where at the n'” iter-
ation

Tns1 = Tn — €aVa 7 {di(F(O; 0); A)}Ir=r.,

{di(F(O%; 0);A)} =

€n > 0.
6

I = {6,A}, ¢n is a learning rate and, V, is a positive
definite matrix.

Updating A and © according to Eqn. (6) requires find-
ing the gradient 71{d;(F(O?; ©); A)}. In this study, we as-
sume that the transformation function F(-) and the stochas-
tic modeling are represented by a feed-forward ANN and
a HMM, respectively. Therefore, the partial derivative is
written as’

oL _ ook du, 9k 96y
or = 8di'd¢g: oT ' 0G; T~
It follows from Eqn. (5) that
o = o L(F(O%0) A) - [1 - k(F(OR O A, (8)
from Eqn. (2),
ad; ad;
T = 1, 3G, = +1, (9)
and finally, from Eqn. (4)
N ) ?. ©): b9
% _ E exp{n - g;(F(OP; ©);A)} - IS (10)
ar — ’
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The remaining partial derivative dg; /0T (or d¢; /0T in Eqn.
(10)) is formulated differently depending whether we are
updating © or A. The process of updating the parameters
of A is described in [4]. In the following section, we will
extend the basic formulation of MCE training to update
the parameters of ©O.

Optimizing the ANN parameters

Feature transformation is performed using feed-forward
ANNs. The networks are essentially MLPs with cascaded
layers of nodes that are fully interconnected via weights
and internal thresholds which represent the parameters of
the network. Supervised training of MLPs has tradition-
ally been done using the error back-propagation algorithm.

1The subscript n in I' is neglected from this point forward.



In {12}, it was shown that applying the back-propagation
algorithm for training an ANN embedded within the sys-
tem shown in Fig. 1 raises several problems. For example,
minimizing a function based on the mean square error crite-
rion as suggested in the back-propagation algorithm is not
related to the objective of minimizing the recognition er-
ror rate. In addition, the target values of the network are
not available during the training process. To alleviate the
difficulty of the back-propagation algorithm in the absence
of available target data, 2 new training objective is intro-
duced in this section. With the aid of the stochastic model,
a loss function based on minimizing recognition error rate
is used ‘as an alternative measure of fit in back-propagation
training. The aim is to train the ANN parameters discrimi-
natively by minimizing the recognition loss function of Eqn.
(5) rather than a mean square error function. Thus, back-
propagation training would then have a direct xmpact on
ma.xumzmg recognition performance than simply minimiz-
ing a mean square error distance that is unrelated in any
way to the recognition process.

Now to minimize the loss function in Eqn. (5) by adjust-
ing the ANN parameters, let’s first consider one such ANN,
O(,, which includes a set of connection weights {wix} and
offsets {bzk} When applying GPD for updating O, as sug-
gested in Eqn. (6), the derivative i{d:(F(0?;0);A)} is
defined according to Eqn. (7) with

89i  _ _Z 1
39, T &2 L(F(OF;0,);5e, Ag)
OL(F(OF; Op); 5¢, Agy)
8@¢ . 6(3: - ¢ta), (11)
where
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where NV (-) is a normal distribution of the transformed vec-
tors F(OF; ©,) having a mean vector ugqp and a standard
deviation vector ogap. For each node in ©, with a corre-
sponding connection weight wi;x and offset bix,

0F(07:0y) _
Ownjk =" Op’(l -y
OF(OF:0y) _ '
Bhes = -H. (14)

Here H' is the derivative of the activation function, H,
which describes the behavior of a unit j belonging to the

I'* output layer in terms of its net input values, {O? 1)}

When M is set to a linear activation function, then the
derivative H’ reduces to one.

3. DATABASE AND EXPERIMENTAL
RESULTS

A speaker-independent telephone-based connected digits
database was used in this study. Digit strings ranging from
one to sixteen digits in length were extracted from different
field-trial collections with varied environmental conditions
and transducer equipment. The training set consisted of
16089 digit strings which was used for designing the recog-
nition models. The testing set consisted of 713 digit strings
which included 16-digit credit card numbers.

The baseline system adopted in this study is similar to
that shown in Fig. 2 but without feature transformation
and with strictly ML-trained recognition models. It op-
erates as follows. An input utterance is first segmented
every 10 msec intervals into frames of 30 msec duration.
Each frame is then processed to give 12 LPC-derived liftered
cepstral coefficients along with a normalized energy feature.
The combined feature vector is augmented with its first and
second order time derivatives to generate a vector of 39 fea-
tures per frame. Since the signal has been recorded under
various telephone conditions and with different transducer
equipment, each feature vector was further processed using
the hierarchical signal bias removal (HSBR) method [14] in
order to reduce the effect of channel distortion.

Following feature analysis, each feature vector is passed
to the recognizer which models each word (i.e., digit) in the
vocabulary by a set of left-to-right continuous density quasi-
triphonic HMMs {10]. A total of 274 context-dependent
sub-word models were used, each being trained with ML
estimation. Sub-word models consisted of 3 to 4 states
with each state having a mixture of 8 Gaussian components.
In order to enable the background/noise model to capture
more acoustic variations in the training data, it was de-
signed to have a single state with 32 Gaussian components.

Table 1 presents results of the baseline system (labeled as
“Baseline-ML”) when using ML-trained recognition models
without imposing feature transformation. Word insertion,
deletion and substitution rates (“%Ins,Del,Sub”) are pre-
sented as well as word error rate (“%Wd-er”) and string
error rate (“%St._er”).

Table 1. Recognition results including word and string error
rates.

System Telns,Del Sub | %Wd_er | %ot.er
“Baseline-ML 0.63,0.14,1.02 1.80 17.2
HMM-MCE | 0.17.0.16.0.82 | 1.14 117
ANN-MCE | 0.08.0.27.1.03 | 1.39 13.4
ANN12-MCE | 0.03,0.26,0.72 1.00 10.7
Integ-ANN 0.05,0.24,0.84 1.14 11.3
Integ-ANN12 | 0.03,0.27.0.66 | 0.96 10.0

The next stage in our work was to evaluate the recogni-
tion system when further training the HMMs with the MCE
method. This procedure included updating the HMM pa-
rameters as suggested in [4], and performing an integrated
MCE/HSBR training [5]. Table 1 shows the results follow-
ing six iterations of training (second row labeled as “HMM-
MCE?”). Those results correspond to our state-of-the-art
system that was reported in [5]. They indicate a reduc-
tion in the word and string error rates by about 37% and
32%, respectively. The major improvement comes from a
reduction in the substitution rate and the insertion rate at
a relatively no cost to the deletior rate.

In our next set of experiments we evaluated the recogni-
tion system in Fig. 2 when having the ML-trained HMMs
with either a single ANN or multiple ANNs performing fea-
ture transformation. Note that the two systems in Fig. 1



and Fig. 2 perform identically when using a single ANN.
Each ANN which was designed to have a linear activation
function was trained using the MCE method. In these ex-
periments, the network weights and offsets were adjusted as
suggested in Eqns. (11)-(14). Prior to MCE training, net-
work parameters were initialized to perform a “self” map-
ping (i.e., copying the input values to the output nodes).
Selecting such an initialization scheme enables each ANN
to be embedded within the system shown in Fig. 2 (or Fig.
1) without affecting the overall baseline performance and
without changing the distributions of the HMMs.

Recognition results when applying the MCE method
for a single ANN or 12 ANNs are presented in the third
and fourth rows in Table 1 (labeled as “ANN-MCE” and
“ANN12-MCE”, respectively). In the case of 12 ANNs, a
neural net was assigned for each digit, including the back-
ground/noise model. Note that each ANN was not “fully”
connected as paths between different streams (e.g., cep-
strum and delta-cepstrum) were disjoined in the hope of
improving generalization. The results shown in Table 1 sug-
gest that even a single ANN with a ML-trained HMM can
results in a moderate improvement in recognition accuracy.
It is surprising that such a small sized network with limited
number of parameters could produce an improvement that
is not significantly different than that achieved for “HMM-
MCE”. However, it is clear that most of the improvement
is obtained as a result of a reduction in the insertion rate
and not the substitution rate. This is certainly not the case
for “ANN12-MCE” where the word error rate is less than
that achieved for “HMM-MCE” due to the lower substitu-
tion error rate. In fact using multiple ANNs as opposed to
a single ANN has resulted in a further reduction in word
and string error rates of 28% and 20%, respectively.

Finally, we performed an experiment integrating the
training of the ANNs and the HMMs within the proposed
unified MCE framework. Upon initializing the system in
Fig. 1 with ML-trained HMMs and self-mapped ANNs, the
integrated system was then trained by applying the MCE
method for six iterations. The results of this process for a
single and multiple ANNs are shown in the fifth and sixth
rows in Table 1 (labeled as “Integ-ANN” and “Integ-ANN12
respectively). Although we observed a substantial reduction
in error rate during training, the testing results seem to be
somewhat indifferent as shown in the Table.

4. SUMMARY

This paper proposed a system for ANN feature and HMM
recognizer design using minimum classification error train-
ing. The intent was to combine training of ANNs which
were introduced for feature tramsformation with HMMs
which were applied for stochastic modeling under a unified
objective function that minimizes recognition error rate. A
preliminary study using 12 feed-forward ANNs with a linear
activation function was reported in which the parameters of
the networks were optimized using the MCE objective func-
tion. Experimental results on a field-trial connected digit
task have demonstrated a further 28% reduction in digit er-
ror rate over a single ANN. When integrating the training
of the ANNs and the HMMs under the MCE framework,
the word and string error rates were reduced by about 16%
and 25%, respectively, over our previously reported high-
performance system in which discriminative training was
applied to the HMMs only.

The particular set up of our integrated system provides
several benefits that are worth mentioning. These include
the generation of task-specific features and models which
could facilitates new understanding of speech/speaker char-
acterization. Also, by including a system of a single or mul-
tiple ANNs using a non-lirear activation function we have

the potential to carry out complex transformations such as
a direct mapping from the speech signal itself to a set of dis-
criminative recognition features. This set-up also provides
the ability to perform discriminative feature reduction, thus
minimizing computational effort as well as providing a more
robust speech recognition system.
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