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ABSTRACT

This paper describes the use of prosodic features for speaker
identification. Features based on the pitch and energy contours of
speech are described and the relative importance of each feature
for speaker identification is investigated. The mean and variance
of the pitch period in voiced sections of speech are shown to be
particularly useful at discriminating between speakers. Fusing
these features with a Hidden Markov Model speaker identification
system gave a marked improvement in figure of merit, over 30%
gain was achieved on the six NIST 1995 Evaluation tests
presented. Handset variability is known to have an adverse effect
on performance when traditional spectral features are used e.g.
cepstra. Results are presented showing that the prosodic features
are more robust to handset variability.

1. INTRODUCTION

Prosodic features, that is features based on the pitch and energy
contours of speech, are known to give information about the
identity of a speaker. Several authors, for example [1,2] reported
on the use of pitch parameters in speaker recognition in the 1970’s
and early 1980’s. However interest in research in the use of
prosodic features appears to have diminished in recent years
because these features alone could not give the level of
performance required for speaker identification and verification in
text dependent systems and it was difficult to see how they could
be incorporated in a text independent system. Pitch extraction was
also error prone and computationally expensive.

Also successful results have been achieved with systems using
Hidden Markov Models of the spectral envelope, for example
Gaussian Mixture HMMs [3] or Ergodic HMMs [4].
Consequently little work has been carried out recently on this
approach. However advances in speech coding have resulted in
more reliable pitch extraction algorithms for example[5] and the
computational requirements of these algorithms are easily met by
presently available digital signal processors and workstations.

The effect of channel distortions and noise on the performance of
speaker identification system is a serious concern. Prosodic
features are known to be less effected by these impairments than
spectral envelope features such as the low order cepstral
coefficients. Prosodic features are therefore worth re-examining
for speaker identification particularly when used to improve the
performance of algorithms using Hidden Markov Model
techniques.

In this paper we first show in section 2 that simple parameters
such as the mean and variance of the pitch period in voiced

sections of an utterance contain useful speaker discriminative
information. In section 3 we describe the results achieved using a
wider range of features selected from the statistics of the pitch and
energy of the speech and their first and second derivatives.
Section 4 briefly describes our Hidden Markov Model system
which uses ergodic HMMs. In section 5 the output data of the
Hidden Markov Model system are fused with the results of the
prosodic model to give improved overall performance. This is
demonstrated on the NIST June 1995 and February 1996 speaker
evaluation test data. Section 6 discusses the robustness of the
features.

2. PITCH

Recent work we have carried out on gender identification[6]
indicates that a speaker’s gender can be identified with 98%
accuracy using the mean pitch parameter alone. This led us to
believe that useful information about a speaker’s identity may be
contained in the speaker’s mean pitch. A pitch estimation
algorithm based on the IMBE speech coder [5] was therefore
incorporated into our system. This was used to extract values of
pitch period for the segments of speech marked as vowels by the
pattern matching process in the classifier stage.

The mean pitch period was then estimated as follows. An initial
estimate of the mean pitch period was made by averaging all pitch
values extracted over each 10 ms frame. It was found that this
estimate was biased by outliers in the pitch distribution caused by
pitch halving and/or pitch doubling. The estimate was therefore
refined by recalculating the mean pitch using only the samples of
the pitch period found to be within plus or minus 35% of the
initial estimate of the mean pitch value. This process was repeated
until successive iterations gave no change in the mean pitch value.
The standard deviation of the pitch period was also estimated.

For verification, an unknown speaker’s pitch score was computed
as the square of the distance between the mean for the unknown
speaker’s pitch and the average of the known speaker’s speech,
weighted by the inverse of the target speaker’s variance.
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Where S, is the pitch score p ,p, are the means of the pitch in

. . . - 2,
voiced sections of speech in testing and training and o, is the

variance of the pitch observed in training. Tests were carried out
on the male speakers in the NIST95 Speaker Identification
Evaluation. Thirty seconds of training from a single file and ten
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Figure 1: ROC Curve Produced by Pitch Score Using
Euclidean and Divergence Measures.

second tests were used. The Receiver Operating Characteristic
(ROC) plot is shown in Figure 1.

While this shows an impressive level of discrimination for a single
parameter estimated over a whole speech file the performance can
be improved by also using the variance of the test data. To do this
we again assume that the distributions are gaussian and the
Divergence or Kullback Leibler distance is used as a measure of
the difference between the training and test distributions. The
score is then computed as:

— (pa_pt)2+at2 (Po"P: )2 +°-Z 1
S = 2 + 2 -
p o, o;

where 2 is the variance of the test observations. This gives the
improvement shown in Figurel.

3. PROSODIC FEATURES

Having established that the mean pitch alone was useful in
discriminating between speakers we decided to experiment with a
more extensive set of features. We therefore chose the first four
statistics, mean, variance, skew and kurtosis of the pitch and
energy and their first two derivatives. The derivatives were
estimated using:

k=2
6pi = z kD

k==2

for the first derivative and:
2 —
o°p, = P,y -op.,

for the second derivative where p; is the estimated pitch period at
frame i.
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Figure 2: ROC Curve for LDA Transformed Prosodic
Parameter Set.

The mean and variance of the length of the voiced speech
segments were added to these. Each of these features was then
evaluated by generating a figure of merit on the NIST95 test set.
The best seven parameters when tested individually were pitch
mean, variance and skew, delta pitch mean and variance, energy
variance and the delta energy kurtosis. Linear Discriminant
Analysis was carried out on these parameters to reduce the
dimensionality of the data and to weight the features optimally.
The first three LDA dimensions were then retained. The
effectiveness of the feature set is illustrated in Figure 3 which
shows a scatterplot of the first two LDA dimensions including
ellipses of points two standard deviations from the training mean.
While some data from other speakers falls within the ellipses
much does not showing that most impostor speakers are rejected
by this measure. Figure 2 shows the ROC curve given by this
measure again for the male speakers. Performance on women is
worse since, as Figure 3 indicates, the points representing women
are more tightly clustered.

4. SPECTRAL ENVELOPE PARAMETERS

An important objective of this work was to combine the prosodic
score with that produced by a system using spectral envelope
parameters, cepstra, to improve the overall performance. The
system used in this experiment is now briefly described.

The acoustic analysis used in the experiments was as follows. The
data was sampled at 8kHz and was then filtered using a filterbank
containing nineteen filters. The log power outputs of the
filterbank were transformed into twelve cepstral coefficients and
twelve delta cepstral coefficients at a frame rate of 10ms. These
coefficients were augmented by energy and delta energy
parameters to give a twenty six element feature vector. The mean
of each of the cepstral parameters was estimated for each segment
of speech and subtracted from each of the feature vectors. The
subword models used were three state Hidden Markov Models
with continuous mixture distributions and a left to right topology
and no skipping of states allowed. The Expectation Maximisation
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Figure 3: Training Ellipses and Scatterplot for Two Speakers and Background Speakers. The stars are true speaker test points, dots are
background speakers. The cluster of background dots to the right represent the female speakers, the more scattered dots are the men.

algorithm was used for parameter estimation and the Viterbi
algorithm performed pattern matching.

Speaker independent models were built as follows. A set of
subword models corresponding to the forty one phonemes of
American-English was built using the TIMIT database and the
American-English part of the OGI Multilingual Corpus.
Recognition was then performed on the training material and the
results of the recognition were compared with the annotation files
to give a confusion matrix between the subword models.

The number of subword classes was then reduced by combining
subword units likely to be confused reducing the number of
classes to twenty eight. The trained classes so combined were
then used to build a new set of speaker independent models. Each
model state had seven guassian mixture modes. At training time
these speaker independent models were used to segment the
training speech for each of the test speakers and speaker
dependent models were then built from this speech. Each of the
speaker dependent models had a single mode per state.

During recognition an unknown speaker’s speech was matched to
a set of models comprising each of the hypothesised target
speaker’s dependent models and a set of speaker independent
models. A score was generated for each of the target speakers
which was the percentage of the total matches achieved by that

speaker’s models. Figure 4 shows the ROC curve for the spectral
envelope parameters using the NIST February 1996 data.
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Figure 4: Improvement in ROC Curve Produced by Pitch.
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Figure 5a: Scatter Plot for True Speakers.

Figure 5b: Scatter Plot for Impostors.
Vertical axis is Hidden Markov Model score horizontal axis is
log(1-pitch score).

5. DATA FUSION

The fusion of the scores from the pitch and envelope parameters
will only be beneficial if the errors are uncorrelated. This can be
assessed with reference to the scatter plots of Figures 5a and 5b.
In Figure 5a where the true speakers’ speech has been input to the
system the majority of points are in the upper right-hand part of
the plot indicating that the speaker scored well for both pitch and
spectral envelope. There are very few points in the upper left-
hand comer of the plot indicating that the speaker scored well for
the spectral envelope but poorly for pitch. This is not the case in
Figure 5b which shows impostors where a large number of points
occur in the upper left-hand corner of the envelope. These points
are rejected as speech from impostors using the pitch score alone.

The fusion of the two techniques is achieved by a linear classifier
in which the divergence is subtracted from the spectral envelope
score described in the previous section to give an overall score for
that speaker on the unknown speaker’s speech. The performance
of the system was tested using male speaker data selected for the
February 1996 NIST Speaker Verification evaluation. This
comprises twenty one target speakers, 653 target trials and 24190
male impostor trials taken from the Switchboard Corpus. Training
data was a two minute section of a single file for each speaker.
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Figure 6: ROC Curves Produced by Spectral Envelope and
Pitch Measures for Test Speech from the Training Handset and
All Handsets.

Test data comprised, 10s sections in length and similar sections
for the impostors.

6. ROBUSTNESS

The effects of the impairments introduced by telephone channels
and handsets is of increasing interest as these effects are a major
obstacle to higher performance[7]. Prosodic features particularly
those based on pitch should be less susceptible to handset and
channel effects. To test this assertion we tested the system using
target test material from the training handsets alone and from both
training and other handsets. The resulting ROC curves are shown
in Figure 6. While the performance of the envelope parameters
has been degraded the performance achieved by the pitch
divergence score is little effected.
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