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ABSTRACT

We describe a system designed to recognize the language of
an utterance spoken by any native speaker over the tele-
phone. The current approach extends our previous work on
language-identification based on sequences of speech units
[2]. To improve performance we extend this work to allow
for inaccurate matches of such sequences. Results are re-
ported for distinguishing between English and German. The
strength of this algorithm lies in the generalizability from
training to test set. We have obtained a means of discrim-
inating between languages based on statistical derivations.
Matching sequences inaccurately in a controlled manner al-
lows us to account for variabilities within languages without
sacrificing cross language discrimination.

1. Introduction

We wish to develop an infrastructure for a large scale lan-
guage identification system which will be able to understand
speech in any language and thereby robustly identify the spo-
ken language. By far the best way to identify a language is
to understand it [4). Language understanding is achieved
through a combination of vocabulary, grammar, and cultural
background and involves a large degree of complexity at each
level of modelling.

In order to build such a system, we believe that it is impor-
tant to systematically reduce the complexity of a language
identification system at all levels. In previous work, we have
addressed the complexity at the level of multi-lingual speech
representation. This paper builds a language identification
system which studies the complexities at the “word” level.

We build a statistical model of the frequency, distribution
and variability of linguistic units in context of longer se-
quences. Descriminant features correspond to selected se-
quences which tend to represent words, sub-words, and fre-
quent, language specific grammatical inflections. Through
quantitative analysis we were able to capture regularities
within a language and select a minimal set of discriminating
features.

In this paper, Section 2 will review the basic system design
including the derivation of the multi-lingual speech units.
Section 3 will explain the statistical model used for feature
selection and the language identification process. Finally,
Section 4 will report our results.

2. The System

In this section we will review our baseline language identi-
fication system and the speech representation used to align
multi-ingual speech input.

2.1. Speech Recognition

The language-identification system used in this study is
based on neural networks. Phonemes are recognized by a
neural network, followed by a search which aligns phoneme-
like labels.

Neural Network Classifiers A neural network is used
to assign scores relating the probability of seeing a given
speech unit to an input utterance. The neural network clas-
sifiers used here are fully-connected, feed-forward, three layer
networks trained using back-propagation with conjugate gra-
dient optimization [1] using a mean squared error criterion.
Acoustic input is represented with a seventh order Percep-
tual Linear Predictive (PLP) model [3], yielding 8 coeffi-
cients (including one for energy). Coefficients within a 156
msec window, centered on the frame to be classified, were
computed and served as input to the phonetic classifier pro-
viding substantial contextual information.

Segmenting the Speech Acoustic features as described
above are calculated every 6 ms. Thus, the network assigns
phoneme category scores to each 6 ms time frame of the ut-
terance. Output scores are computed for each incoming time
frame creating a matrix of probability-like scores over time.
Speech is segmented into a time aligned string of phonemes
by using the optimal path through the outputs of the neural
network. Durations are represented as minimum and maxi-
mum duration corresponding to the 2nd and 90th percentile



of a histogram computed over all training files for each of the
phonemes. A Viterbi search takes duration constraints and
transition probabilities into account when searching for the
optimal path.

2.2. Speech Representation

Clustering of phonemes across languages is based on the
premise that not all phonemes are of equal importance to
the language identification task. In fact, decreasing the num-
ber of phonemes to be recognized may improve the phoneme
recognition accuracy which in turn may improve alignment
and language identification by simultaneously decreasing the
complexity of the recognizer and increasing the number of
training samples for each class. While clustering phonemes
it is important not to lose the ability to discriminate lan-
guages by pruning the clustering process.

Clustering If we look at the phoneme recognizer as a
channel between the acoustics and the Viterbi search, then
we want this channel to carry a maximum amount of infor-
mation about the incoming signal as reflected by the mutual
information measure. In order to guarantee an increase in
performance of phoneme recognition, we chose at each step
to merge the pair of phonemes which maximizes the mutual
information. Let p(x|y) be the conditional probability of
recognizing y as x after alignment. With ¢(y) denoting the
prior probability of y, P(z) = Z q(y)p(x|y) is the estimated
occurrence frequency of r after a.hgnment The mutual in-
formation measure is then given by:

MI= Zyjq(y)paly)zog(",‘,y()’;‘ )W

In practice, we derive p(z|y) by using the confusion matrix
which is derived by aligning utterances before clustering and
comparing frame-based labels of the aligned files to the hand
labeled files. Deriving the prior probability ¢(y) from the
labeled files, the mutual information between the observed
and actual phonemes can now be calculated.

Pruning While increasing alignment accuracy by cluster-
ing phonemes it is important to retain discrimability between
languages. We can estimate the discrimination error at each
level of clustering. Because sequences in both languages can
now be expressed in terms of these derived speech units, we
have gained the ability to automatically select discriminating
features consisting of the occurrence frequencies of sequences
of speech units. The resulting algorithm, based on an opti-
mally chosen and weighted set of such features, allows us to
theoretically predict the language classification error. By es-
timating the error at each level of merging we can disallow
the mergers of phonemes which decrease the discrimination
ability between a given set of languages.

2.3. Feature Selection

Features for language identification consist of sequences of
these derived speech units. For each sequence we derive an
estimate of the language discrimination error. We assume
normal distribution of the occurrence frequencies for each
sequence i in language I:
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where (n is the number of speakers). The two components of
the variance s[i]? represent the variability due to the length
of the utterance and the speaker dependent variability and
are expressed as follows:
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and, with t ranging over segments,
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We can thus estimate the discrimination error between two
languages, 1 and 2, using this approximation of the Bhat-
tacharyya distance measure:
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Sequences are ordered based on the estimated discrimination
error. The top N sequences make up the list of vocabulary
used for discriminating two chosen languages.

2.4. Phoneme Recognition Accuracy

Clustering using the above algorithm results in 78 speech
units for the six language system, including Hindi, Japanese,
Mandarin, Spanish, German, and English. Only those
speech units which do not result in decreased performance
for any of the language pairs in the six language set are
allowed to cluster. Discriminating between German and En-
glish results in 59 speech units. In Table 1 it can be seen
that clustering improves frame based recognition accuracy.
Using a grammar to align the files is more meaningful after
clustering.

Classes | Grammar | Performance (%) | Alignment (%)
95 SIX 16 15
ENGE 16 16
78 SIX 19 21
59 ENGE 19 25

Table 1: Summary of Results from Alignment



3. Language Identification

Language identification is based on deriving a “vocabulary”
of representative sequences for each language in the system
as described in the previous section. Occurrence frequen-
cies of these sequences are computed for an utterance of un-
known language and is classified as the language which best
matches the vocabulary. We describe how each sequence is
represented, selected, and applied towards language identifi-
cation.

3.1. Sequence Representation

We want to allow for inaccurate matches of sequences in
an incoming utterance in order to account for unseen data,
inaccurate alignment, and pronunciation/dialect variability
within a language. In order to represent a sequence we define
a measure of allowed inaccuracy. If we imagine the space
of all sequences partitioned as shown in Fig. 1, we use the
following terms:

Center The Center sequence of a set of associated se-
quences - their representative sequence.

Radius Defines the degree of allowed inaccuracy between
sequence and Center.
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Figure 1: Space of All Sequences. A,B, and C represent the
centers of the three sets. Each set is associated with a Radius
shown by the line. Sets may overlap.

We next derive the degree of inaccuracy with which this
Center can be matched without deteriorating language dis-
criminability.

3.2. Associating Sequences

A “Word” is created by associating a set of sequences with
each other. The aim is to associate sequences which cover the
variability of a word within one language without sacrificing
any discriminability across languages. For example, suppose
the given list of pronunciations represents the word “und” in
German and “and” in English:

“und”
“and”

Juh/n/tcl/t/  [eh/nftcl/t/  [eh/n/dcl/d/
/ah/n/dcl/d/ [ah/m/dcl/d/ [eh/n/dcl/d/

Looking at these pronunciations, we note that the first two
pronunciations belong only to one of the languages while
the third pronunciation is no longer distinctive. We want
to develop some measure by which the addition of the third
pronunciation is restricted, while still allowing the flexibil-
ity of associating the first two with the respective language
dependent words.

Distance scores between two sequences are calculated using
dynamic time warping with bigram based confusions derived
from the labeled files (represented by x,y) and the aligned
files (represented by a,b) as follows:

P(subl) P(a|z)

P(sub2) AP(ablzy)P(zy)+ (1 — A\)P(a|z)P(bly) (6)
P(del)  P(a|zy)

P(ins) P(ablz)

Thus the cost 3 of a substitution of label a for label x during
alignment is equal to P(subl), and the probability that the
sequence a in the aligned file actually represents xy is equal
to P(del). Due to the lack of data P(sub2) interpolates bi-
gram probability with unigram probability. A was chosen to
be .9. The main reason for this extra term is uniqueness for
each substitution for the purpose of defining a unique Ra-
dius for each added sequence. Probabilities corresponding to
longer lengths sequences are always derived from the above
bigrams. The reason for this approach is two-fold. First,
bigrams are a reasonable basic unit since the alignment is
based on a bigram-grammar only. Second, we want to be
able to create a score for any occurring sequence in the test
set that we have not seen before. Using bigrams we can cre-
ate a consistent scoring algorithm. In general for sequences
of length i and j, greater than two, the distance B8[Ai, X;]
between sequence A and X is computed below:

BlA1,X1] = P(sub2), B[A1, Xo] = P(ins), B[Ae, X1] = P(del)

{ﬁ[A.--l,X,--l] P (sub2)
BlAi, X5] = maz ¢ B[Ai~1, X)) =P (del)
BlA:, Xj-1] *xP(ins) )

The score 3 relates to the probability that a given sequence
A is a variation of the Center sequence X. 3 will be used
to weigh the occurrence frequency of A.

3.3. Feature selection

We now have an estimate of the language discrimination er-
ror due to a set of associated sequences. The size of the
set is delimited by its Radius. The goal is to restrict the
Radius such that the allowed variability does not reduce
the ability to discriminate languages. Sequences are sorted
with respect to their distance to the Center estimated by
B. The new mean u and variance o is recomputed based on



the assumption that all sequences in the corresponding set
are treated as one in the training files. The discrimination
error is estimated at each Radius using the approximated
Bhattacharyya distance as in Equation 5 by substituting
for u and o for s. The optimal Radius is chosen to represent
the Center. Figure 2 depicts this process.

I
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u3 | u3| w3| u3j u3| u3| u3| Sequence3
|| Sequence N
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Figure 2: Grouping sequences together. ui denotes mean
occurrence of sequence i. The Radius indicates how many
sequences may be added to a set before the discrimination
error increases. ‘

3.4. Language Identification

The incoming sequences are matched with all Centers which
are represented by a sequence and a Radius. If the returned
score of the match is within the given Radius, then the cor-
responding word count is incremented by the corresponding
weight. It is possible that a given sequence matches more
than one Center but the weight with which they are asso-
ciated differ. All resulting occurrence frequencies of these
Centers are normalized by the length of the utterance.
Since the normal assumption that was used during error-
estimation for clustering may not be appropriate, we have
used a non-linear neural network as classifier which is also
able to take co-occurrence of input features into account.

4. Results

Table 2 compares language discrimination for sequences of
length 1. It can be seen that results are best when combining
inexact sequence matching with phoneme clustering. Thus,
the error rate is reduced substantially by inexact matching
when the phonemic units are clustered into 59 classes. When
95 classes are retained, however, inexact matching degrades
performance, because there is too much variability in the
resulting groupings of phonemes.

Classes | type accuracy (%) |
95 exact 87
inexact 80
59 exact 88
inexact 93

Table 2: Summary of Results from Language Identification

5. Conclusions

From the results it can be seen that through inexact sequence
matching we can improve generalization from training to test
set for our language identification system. It has been re-
ported in the literature for similar approaches that sequences
of longer length carry more information than shorter ones.
We believe that the key to success lies in applying inexact se-
quence matches to shorter sequences by allowing intersection
between sets of sequences that are clustered together.
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