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ABSTRACT

In many speech applications, control of the speech individuality is
required. These applications include the personalization of the
voice of speech synthesizers, the restoral of voice individuality for
interpreting telephony, the improvment of abnormal speech
intelligibility. It is generally admitted that both prosodic and
spectral parameters have to be changed in order to modify the
speech individuality.

Several algorithms have recently been proposed for the spectrum
control. This paper presents some improvments added to these
previously proposed methods and compares 4 approaches in the
same common framework of voice conversion for application to
text to speech synthesizers.

1. GENERAL FRAMEWORK

This study has been realized in the general framework of voice
conversion and was restricted to the transformation of spectral
parameters. The main objective was to create new voices for text
to speech synthesizers using speech segments concatenation.

Two approaches can be used to create new voices for speech
synthesizers record nmew speakers and apply automatic
segmentation algorithms to segment the recorded signals in
elementary segments as diphones, or modify existing segments
from one original speaker by voice conversion techniques. We
have studied the possibilities of the second approach.

We have used 2 speech databases, corresponding to 2 different
speakers called the source speaker and the target speaker. The
voice conversion consists in transforming the speech of the source
speaker so that it sounds like the speech of the target speaker.
During a training phase, a spectral transformation is learned using
the training database. Then this transformation is applied to the
test data. We have developped and compared several techniques of
spectral transformation for voice conversion using the same
analysis and synthesis technique, the same spectral parameters and
the same databases.

1.1. Databases

We have used databases of the CNET (France Telecom) text to
speech synthesizer. They are made of the same French logatomes
for each speaker. They are sampled at 16 Khz with 16 bits.

From these logatoms, we have extracted the diphones which are
effectively used by the synthesizer. By spectral analysis and
temporal alignment we obtained 2 spectral vector databases, 80%

of which were kept for the training and 20% for the test. The total
number of cepstral vectors was 35000.

We have divided these databases in 2 parts, corresponding to
voiced and unvoiced frames. All the tests were done in 2
situations : training and transformation on the total training
database including voiced and unvoiced vectors, separate training
and transformation for the voiced and unvoiced databases.

We also disposed of 2 sets of phonetically balanced sentences for
the same speakers.

1.2. The Analysis and Synthesis method

The above databases were analyzed using the Harmonic + Noise
Model (HNM) which allows high quality speech synthesis and
prosodic modifications. The HNM performs a pitch synchronous
decomposition of the speech signal making use of a sum of purely
harmonic signals and of a modulated noise [1,2].

For voiced sounds, the speech spectrum is divided into two bands
delimited by a time-varying frequency called the maximum voiced
frequency. The lower band of the spectrum is represented solely by
harmonically related sine waves. The upper band is modeled as a
noise component modulated by a time-domain amplitude
envelope.

The amplitudes of the harmonics that constitute the voiced part of
speech are determined by a time-domain weighted least-squares
technique [1]. For the unvoiced part (unvoiced frames and the
upper band of the spectrum for the voiced frames) the energies of a

" bank of filter are calculated. The frequencies of the harmonic and

of the filter bank are converted to a Bark frequency scale using the
analytical formulas reported in [3].

In this study, during the training procedure the analysis is
performed at a constant frame rate of 10 ms in order to allow time-
alignment by a DTW algorithm. During the transformation
procedure, first a synchronous analysis is done and the spectral
envelope is calculated from the HNM parameters, the spectral
parameters are modified, then the HNM amplitudes of sinusoids
and noise parameters are derived from the modified spectral
envelope and the HNM synthesis is achieved with these modified
parameters.

1.3. Spectral parameters

A continuous model of the spectral envelope that connects the
obtained harmonics and the energies of the filter bank is estimated
using the discrete regularized cepstrum method [4]. The spectral
envelope is thus described by parameters that are analogous to the



standard Mel-Frequency Cepstrum Coefficients. They are noted c;
in the following text. An order p=16 was used.

The first cepstral coefficient ¢, , which represents the energy of the
frame was omitted from the training parameters. For some tests,
the cepstral coefficients were normalized, using means and
standards deviations calculated on the training databases.

The square euclidian distance d was used in the different
algorihms to evaluate distances between 2 cepstral vectors ¢’ and
', of size p.

d(c’,c") =li(6is _CiT)z
P i=1

2. SPECTRAL TRANSFORMATIONS

It has already been demonstrated that a linear conversion of the
frequency axis is not sufficient to transform the spectrum from one
speaker to another and that the transformation should depend on
the type of sound to be modified.

To take into account this dependency on the sound class, we have
for some experiments classified the cepstral vectors in differents
classes using vectorial quantization.

Four spectrum conversion methods have been compared :

1. Vector Quantization Mapping (VQM) [5]
Conversion is done by mapping two vector
quantisation codebooks.

2. Statistical conversion (GMM) [6] : The spectral
transformation uses a Gaussian Mixture Model
(GMM) to modelize the acoustic space of the
source speaker and is linear in each acoustic class.

3. Neural Networks conversion (NNETS): Multilayer
perceptrons convert source spectral vectors.

4. Linear Multivariate Regression (LMR) [7] : Linear
transformations converts source vectors.

2.1. VQM, spectral conversion by Mapping of

Vector Quantization codebooks

Training phase : in the training phase, for each speaker training
database a vector quantization (VQ) codebook of size N is
constructed by the LBG algorithm. The cepstral vectors are then
quantized with the appropiate VQ codebook and time aligned by
DTW (Dynamic Time Warping).

From the aligned cepstral vectors couples, histograms of
correspondances are calculated. These histograms indicate for each
vector of the source VQ codebook, the numbers of associations
(by DTW) of this vector with each vector of the target VQ
codebook.

A Mapping codebook is calculated from the histograms. The
mapping codebook associates to each vector of the source VQ
codebook a transformed vector. Two kinds of mapping codebooks

have been evaluated : max_mapping and weighted_mapping
codebook. To each vector of the source VQ codebook, the
max_mapping codebook associates the vector of the target VQ
codebook corresponding to the maximum in the histogram, while
the weighted_mapping codebook associates a vector which is a
linear combination of vectors in the target VQ codebook, with
weights given by the values in the histograms.

In the case of the weighted_mapping codebook, we have improved
the subjective quality of the transformed voice by replacing this
codebook by a natural_codebook which is obtained by replacing
each vector of the weighted_mapping codebook by the closest
unquantised target vector.

Transformation phase : a source cepstral vector is transformed by
first vector quantizing it with the source VQ codebook and then
substituting it with the corresponding vector in the mapping
codebook.

In the VQM approach, the converted voice quality is limited by
the vector quantization of the cepstral vectors.

2.2. GMM statistical spectral conversion
method

Training phase : The first step of the statistical approach consists
in fitting a gaussian mixture model (GMM) to the source vectors
¢5. Thus, the probability distribution of the observed parameters
can be written as :

P(c)=Y a,N(c*;p;,Z,) M

i=1

where N(c;i,Z) denotes the p-dimensional normal distribution
with mean vector [ and covariance matrix £ and o are normalized
positive scalars. Note that the gaussian mixture model has the
ability to model the acoustic space of a speaker as a combination
of several components Q; (i=1,...m), where m is the number of
mixture components. The conditional probabilities P(Qi / cs) that a
given observation vector ¢ belongs to one of the acoustic classes
Q; is given by :

S.
P(Q/cs)= maiN(c ’”i’zi) 10
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The parameters of the GMM are estimated using the classic
Expectation-Maximization (EM) algorithm of [9].

The following parametric form
conversion function F :

[2, 6] is assumed for the

Fe)=3 P@ /e +TE (€ - )] @

The conversion function F is entirely defined by the p-
dimensional vectors v; and the pxp matrices I, for i=1,...m. The



parameters of the conversion function are obtained by least
squares optimization on the learning data so as to minimize the
total squared conversion error € between the N converted data
F(c>*) and the N target data ¢7* :

N
e=Y d(c™, F(c*)) @
k=

1

The complete leamning procedure using the above statistical
approach is depicted on figure 1, and a detailed description of the
statistical approach using GMM can be found in [2, 6,10].
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Figure 1: learning procedure for the GMM method

We distinguish three particular types of conversion functions : Full
conversion where no constraints are applied either to the
parameters of the GMM or to those of the conversion function,
Diagonal conversion where matrices X; and T} are diagonal and
VOM-type conversion if we omit the above two matrices from 3).

Transformation phase : To transform a source spectral vector,
the conversion function F is applied directly to this vector.

2.3. NNETS spectral conversion method

NNETS have already been applied for voice conversion [11],
transforming formants. Here multilayer perceptrons are used to
convert source cepstral parameters. The best results were obtained
with networks with 2 hidden layers of size 15, or with 3 hidden
layers of size 12.

Training phase : The 2 cepstral vector databases are time aligned
by DTW. This alignment gives the (input, output) couples of
associated (source, target) cepstral vectors for the training of the
neural networks. The cepstral vectors are normalized, using the
corresponding source or target means and standard deviations.

For the source speaker a VQ codebook of size M is constructed.
Using this codebook, the couples of cepstral vectors are classified
in M different classes and a neural network is trained for each
spectral class. The maximum number of classes was 64.

The criterium which is optimised during the training is the average
quadratic cepstral distance d between the target cepstral vectors
and the corresponding transformed source vectors.

In the case of a single class, a single neural net has to be trained
with a large amount of data. we have tested 3 types of gradient
back propagation learning algorithms for the neural net : global
learning, stochastic learning and semistochastic learning.

In the global learning, at each iteration, the gradient is corrected by
evaluation on the complete database. In the stochastic learning, at

each step, the gradient is corrected by evaluation on a single vector
randomly chosen in the database. In the semi-stochastic learning,
the gradient is corrected by evaluation on a randomly chosen
subset of N vectors containing one vector of each class of a VQ
codebook of size N. The semi-stochastic approach was the best
method both for speed and quality of results.

The initialization of the neural nets is done in such a way that at
the beginning of the training, the output vectors of the network are
very closed to the input vectors. So the original criterium is nearly
equal to the distance between the source and target vectors. Biaises
are initialised with very small random values. Weigths are fixed to
one plus a small random noise on the direct connectns, they are set
to zero plus a small random noise on the crossed connectns.

Transformation phase : a source cepstral vector is transformed by
normalizing it with the source means and standard deviations, then
applying the normalized vector to the neural network
corresponding to its class and finally denormalising the output of
the network with the target means and standard deviations.

24. LMR, Linear Multivariate Regression
spectral conversion method

Training phase : The 2 cepstral vector databases are time aligned
by DTW. The cepstral vectors are then normalised as previously
described for NNETS. Then, the vectors are classified in different
classes (using VQ) and a linear transformation is learned for each
class.

Let ¢™ be a target cepstral vector and ¢>* be a source cepstral
vector. The source vectors ¢* are converted in ¢“* vectors by a
matrix M calculated in order to minimize the criterium J:

cC,k =McS.k
o Tk ck\?
Femin 3 (e -cet)
k=1 i=

. . -1
The optimal solution is : M = CTCS(CSCS)

where C' represents the transposed matrix C, and Cg and Cr are
the matrixes (Nxp) of the N source and target cepstral vectors.

Transformation phase : A linear transformation is used to
convert source spectral vectors. A source cepstral vector is
transformed by normalizing it with the source means and standard
deviations, then applying the LMR matrix M corresponding to its
class and finally denormalizing the transformed vector with the
target means and standard deviations.

2.5. NNETS or LMR with context conversion

For NNETS and LMR methods we have also done the training
using the context of each cepstral vectors. The transformation of a
vector is done taking into account the preeceding and the
following vector. For each actual vector of the source we have
formed « context vectors » by concatening 3 cepstral vectors : the



actual vector in the middle, with the preeceding vector at the
beginning and the following vector at the end.

In the LMR case, for the calculation of M, the matrix Cy is
unchanged, but the matrix Cg is formed of the context vectors and
itis 3 times larger as before.

In the NNETS case, the cepstral input vectors, which are context
vectors are 3 times bigger as the output cepstral vectors.

3. EXPERIMENTS AND RESULTS
3.1. Quantitative results

The table 1 gives the normalized distances (average quadratic
cepstral distances) obtained with the different methods, and
distinguishes the cases voiced V, and unvoiced UV. A normalized
distance is a distance divided by the distance between the souce
and the target. The distances were calculated on the test databases.

Dtc = Normalized distances between target and converted vectors,
Dsc = Normalized distances between source and converted
vectors The numbers in brackets represent the numbers of classes
or of components. (¢, apart) means that c, is linearly transformed.

Dtc V Dsc V Dtc UV | Dsc UV

vQMm 0.30 0.77 0.20 0.84
WeightedMap

VQM maxMap |0.41 0.88 0.28 0.92
Full (64) 0.28 0.75 0.20 0.83
Diag (128) 0.30 0.70 0.20 0.79
VQMtype (256) | 0.30 0.77 0.20 0.82
NNETS (1) 0.35 0.65 0.23 0.85
NNETS (64) 0.32 0.79

LMR (1) 0.36 0.64 0.22 0.77
LMR (64) 0.31 0.74

LMR(1,context) | 0.34 0.66

Table 1 : Normalized distances, for voiced and unvoiced cases.
It can be notice that non linear neural networks do not give better

results as pure LMR, when the transformations are learned on 64
classes.

3.2. Subjective results

Subjective tests were done on the sentences to evaluate the quality
of the transformed speech.

It gave GMM > NNETS = LMR >VQM.

But the obtained speech quality is too poor even for a text to
speech synthesizer.

3.3. Work in progress

In order to improve the speech quality, the transformation of the
phase of the harmonics of the HNM model is under study.
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