POST : Parallel Object-Oriented Speech Toolkit

Jean Hennebert and Dijana Petrovska Delacrétaz
Circuits and Systems Group - Swiss Federal Institue of Technology, Lausanne

ABSTRACT

We give a short overview of POST, a parallel speech toolkit
that is distributed freeware to academic institutions. The
underlying idea of POST is that large computational prob-
lems, like the ones involved in Automatic Speech Recognition
(ASR), can be solved more cost effectively by using the ag-
gregate power and memory of many computers.

In its current version (January 96) and amongst other
things, POST can perform simple feature extraction, train-
ing and testing of word and subword Hidden Markov Mod-
els (HMM:s) with discrete and multigaussian statistical mod-
elling.

In this parer, the implementation of the parallelism is dis-
cussed and an evaluation of the performances on a telephone
database is presented. A short introduction to Parallel Vir-
tual Machine (PVM), the library through which the paral-
lelism is achieved, is also given.

1. Imntroduction

POST is a parallel Object-oriented speech Toolkit developed
for designing speech and speaker recognition applications.
The idea of the POST toolkit is born starting from the
following observations. First, there is a growing demand
for computer resources in order to build more complicated
speech models and to deal with very large databases. Second,
ASR applications can easily be parallelized at several levels
of the algorithms. Finally, very efficient tools to parallelize
networked Unix computers are available.

The POST project has started in September 95 within the
Circuits and Systems Group of the Swiss Federal Institute of
Technology, Lausanne. This toolkit, primarily designed for
internal purposes, presents new features (mainly parallelism)
that other speech toolkits does not have. Therefore, it has
been decided to provide freeware executable of it to academic
institutions[1].

The main objective of POST is to deal with heavy
speech/speaker recognition tasks. More precisely, POST is
a research and development speech toolkit built in order to

perform reliable comparisons of different algorithms and to
develop, compute and test quickly new speech models. From
a hardware point of view, POST is a Jow-cost speech toolkit
that works in parallel on an heterogeneous collection of Unix
computers without any dedicated hardware.

This paper is organized as follows. In the second section,
PVM, the library through which the parallelism is achieved,
is presented. In the third section, the choice of the parallel
architecture is discussed. The fourth section gives a closer
look of the features already implemented into POST. In the
fifth section, we present results of a speaker independent iso-
lated word recognition task’.

2. Parallel Virtual Machine

POST achieves parallelism through a freeware library called
Parallel Virtual Machine (PVM) [7]. We have choosen PVM
because it is a wide-spread, well validated, simple and flexible
tool. The PVM distribution including sources and documen-
tation can be downloaded from [2)°.

In short, PVM is a software system that enables a collection
of heterogeneous computers to be used as a coherent and
flexible concurrent computational resource. Such a parallel
system is referred to a Multiple Instruction stream, Multiple
Data stream (MIMD) system in which there are N tasks, N
streams of instructions and N streams of data [4]. Each pro-
cessor is potentially executing asynchronously different pro-
grams on different data while solving different subtasks of a
single task. PVM can deal with shared-memory multiproces-
sors systems (or tightly coupled machines) or local-memory
processors interconnected by a network (multicomputers or
loosely coupled machines). A set of functions such as process
initiation, message transmission and reception, and process
synchronization is provided. The PVM system transparently
handles message routing, data conversion for incompatible
architectures, and other tasks that are necessary for opera-

1This task can not be considered as a large ASR task but we
have chosen it in order to have a simple and fast validation of the
algorithms installed in the toolkit.

2Qther similar packages do exist, as the Message Passing Inter-
face (3], that seem to be very efficient to implement parallelism.

tion in a heterogeneous, network environment.

The PVM software is very portable and has been compiled
on everything from laptops to CRAYs. PVM enables users
to exploit their existing computer hardware to solve much
larger problems at minimal additional cost. Hundreds of
sites around the world are using PVM to solve important
scientific, industrial, and medical problems. The PVM sys-
tem has been used for applications such as molecular dynam-
ics simulations, superconductivity studies, distributed frac-
tal computations, matrix algorithms, and in the classroom
as the basis for teaching concurrent computing.

3. Parallelism within POST

Generally, the choice of a parallel computer processing con-
figuration is dependent of what we want to solve and of the
hardware we have at disposition[4]. Looking at common ASR
experiments, the first kind of task that comes to our mind is
going through a large database in order to produce an eval-
uation of a feature extraction algorithm, a statistical model
or a grammar network. We call these kind of tasks database
tasks. The second task is doing online experimentations in
order to evaluate the user side of ASR applications. We call
these kind of tasks online tasks.

From the hardware point of view, our purpose is to do an
optimal usage of the cpu power of a cluster of Unix worksta-
tions, taking into account the following observations :

1. they may come from different familly or be from differ-
ent generation of processors;

2. they may be of different cpu capabilities (other pro-
cesses running or different kind of processors);

3. they are linked in some manner (local area network,
multiprocessor system, ...).

Considering the hardware constraints listed above, it is clear
that the purpose of POST is not to be a real-time applica-
tion software. Nevertheless, it should permit very fast online
demonstrations by using the aggregate power and memory
of many computers.

Database tasks require an optimization of the cpu resources
while for online tasks, optimization of the response time is
necessary. Both tasks will need to be treated differently by
the parallel system. Given the application and hardware
constraints described above, we have decided for a master-
slave configuration as illustrated in figure 1. The master
is running on the processor where the command has been
issued and N slaves are launched on P processors.

As described hereafter, this configuration enables the treat-
ment of both database tasks and online tasks. In its current
version, POST can perform database tasks in parallel. The
implementation of online tasks is still under development.

POST

MASTER

NETWORK OR INTERNAL BUS

1
I '
POST | | POST POST

SLAVE #/ SLAVE #2 SLAVE #N

Figure 1: Master-slave configuration of POST with N
slaves.

3.1. Database tasks

The global process or task is split into a set of T independent
subtasks, so that T > N. By independent subtask, we mean
a subtask that does not need to wait the result of another
subtask to be processed. The operations are the following:

1. Initialisation: the master sends to each slave the neces-
sary information about the subtask he has to process;

2. The slaves execute in parallel the code in order to solve
their subtask;

3. As soon as a slave has finished his job, he warns the
master;

4. The master accumulates the subtask results and gives
to the freed slave another subtask to process;

5. Go back to 2.

If some slaves are more powerful (better processor or proces-
sor less loaded), they will just perform more subtasks. This
way of distributing subtasks leads to a natural automatic
load balancing and to an optimal usage of the global cpu
resources.

3.2. Online tasks

In this case, the task is split into a set of T dependent sub-
tasks, so that T ~ N. By dependent subtask, we mean a
subtask that needs to wait for the result of another sub-
task to be processed. This configuration is one of a pipeline
in which the master orchestrates the data flow between the
slaves. The operations are:

1. Initialisation: the master sends to the each slave the
necessary information about the subtask he has to pro-
cess;

9. The slaves execute in parallel the code in order to solve
the subtask;

3. As soon as a slave n has finished his job, he warns the
master;

Task MOL

Parametrization D S/P

Quantization D S/P

HMM Training D S/P

Isolated Word Reco D S/P
Isolated Word Reco O S

Connected Word Reco O planned

HMM Annotation D S

Table 1: Features implemented into POST.

4. The master passes the results of the subtask issued from
slave n to the slave n + 1 in the pipe;

5. Go back to 2.

This way of distributing subtasks does not generally lead to
an optimal usage of the global cpu resource because some
slaves may wait uselessly if the preceding one in the pipe has
not finished with his subtask (bottleneck problem). Auto-
matic techniques for resizing subtasks and for spawning new
slaves where needed are under investigation.

4. Features of POST

The toolkit is developed in C++ and should be portable on
the majority of UNIX workstations without any problems.
The object oriented programming concept has been chosen
to facilitate multi-user developments and future extensions
of the toolkit.

In its current version (January 96), POST can solve database
tasks (D) and online tasks (O), in standalone mode (S)
and/or parallel mode (P). Table 1 gives an overview of the
kind of ASR tasks that POST can handle.

The algorithms that are currently implemented are the fol-
lowing:

Liftered LPC-Cepstral feature extraction [11];
Viterbi HMM training, Viterbi HMM recognition [12];

Discrete® [8], Multi-Gaussian [10} and Parzen Windows
{5] probability density function models;

Context Independent Phoneme (CIP) models, Context
Dependent Phoneme (CDP) models or Word models
[12].

We distinguish between the task and its algorithm solving
because the object oriented way of programming permits to
exchange very easily the algorithm engine. For a more com-
plete description of the algorithms and of POST in general,
the reader should refer to [9].

3Codebook creation is currently performed outside of the
toolkit.

5. Results

We report here a preliminary evaluation of the performance
of the toolkit with a speaker independent isolated word
recognition task. For an extended version of these results,
the reader can take a look in [1]. All the experiments re-
ported in this paper were performed using the same training
and test set in order to ensure reliable comparisons.

We used a database in German language containing 108 pho-
netically balanced words pronounced by 536 speakers. 400
speakers were used to train the HMMs, 136 speakers were
used as test set. We used the liftered LPC-cepstral fea-
ture extraction algorithm with cepstral mean substraction
(LCMS). The acoustic vectors were computed every 10 ms
over a 30-ms window. After pre-emphasis (a=1) and appli-
cation of a Hamming window, ten LPC coefficients were used
to compute the cepstrum.

The first set of results reported in table 2 shows the influence
of the vocabulary size. Tests conditions are the following: 4
streams (12 LCMS, 12 ALCMS, 1 Alog(E), 1 AAlog(E)),
monogaussian statistical modelling, 42 CIP models with 3
states/CIP plus one state model for the silence, CIP models
training performed on 108 words with 15 iterations on the
database, testing performed on words models obtained from
a concatenation of CIP models. The quite low performance
on the digits is explained by the high confusion that exists
between the german words "zwei” and "drei”. We have to
point out that, for this kind of isolated word recognition
task, the response time can be independent of the vocabulary
size if enough computers are used. Indeed, the recognition
is performed computing the best score through all of the
models which can be efficiently spread by the toolkit through
the cluster of workstations.

Vocabulary Size | Error Rate
10 (digits) 6.6 %
108 9.3 %

Table 2: Comparison results regarding the vocabulary size
of an isolated word recognition.

Table 3 shows the gain in performance with the addition of
delta and energy coefficients to the single cepstrum vector
stream. Tests conditions are the following: discrete statisti-
cal modelling, 10 words models (digits), codebooks trained
with the K-means algorithm initialized by a Kohonen algo-
rithm [6], codebook sizes are 121 for LCMS, 121 for ALCMS,
32 for Alog(E) and 32 for AAlog(E).

Table 4 shows the performances of different statistical mod-
els. Tests conditions are the following: 1 stream of 12 LCMS
coefficients, 10 word models (digits). As expected, multi-
gaussian modelling performs better than monogaussian and
discrete systems.

Table 5 shows the performance of different {sub)word models.

[Data Streams #Stream | Error Rate
12 LCMS 1 8.1%
12 LCMS +Alog(E)) 37 %
12 LCMS+12 ALCMS 4 2.6 %
+Alog(E) + AAlog(E) 07

Table 3: Comparison results regarding the number of
streams.

State Statistical Model | Error Rate
Discrete 8.1%
Monogaussian 5.4 %
4 Mixtures 4.8 %

Table 4: Comparison results regarding the state statistical
model.

Tests conditions are the following: 4 streams (12 LCMS, 12
ALCMS, 1 Alog(E), 1 AAlog(E)), discrete statistical mod-
elling, 108 words for training and testing, codebooks trained
with the K-means algorithm initialized by a Kohonen algo-
rithm, codebook sizes are 121 for LCMS, 121 for ALCMS,
32 for Alog(E) and 32 for AAlog(E), CDP transcriptions
obtained by a simple concatenation of two adjacent CIPs.
As expected, word models perform better than CDP mod-
els that perform better than CIP models. On the other
hand, CIP and CDP models permit to extend the vocabulary.
There is a tradeoff between the performance, the flexibility
and the number of states the system has to handle.

Model Type | #Models | #States | Error Rate
Word 108 2133 2.7 %
CDP 349 1047 5.0 %
CIP 42 126 71%

Table 5: Comparison results regarding the model type.

6. Conclusion and Future Work

In this paper, we presented an overview of POST, a parallel
object-oriented speech toolkit. We gave a short description
of the kind of task we would like to handle in parallel with
the toolkit, namely database tasks and online tasks. We dis-
cussed the master-slave architecture choice and we reported
results on a speaker independent task that seem to validate
the algorithms installed in the toolkit.

In its current version, the toolkit can do usual database tasks
in parallel mode and online tasks in standalone mode. While
POST is still at an early stage of its development, free-
ware executable of POST are made available for academic
institutions([1].

In the future extensions of the toolkit, the following features
are planned to be released:

e input-output compatibility with standart databases,

e connected word recognition,
e hybrid HMMs-neural networks,

e online parallel tasks with automatic bottleneck cancel-
lation technique.

7. Acknowledgments

We would like to thank F. Bugnon, J. Reichel, P. Pfister
and A. Sanchez for their helpful contribution in testing and
debugging the toolkit. We acknowledge the CIRC and EPFL
in general for supporting this work.

8. REFERENCES

1. http://circwww.epfl.ch/data/general/
jean/post/post.html.

2. http://www.epm.ornl.gov/pvm/.
3. http://www.erc.msstate.edu/mpi/.

4. S. G. Akl. The Design and Analysis of Parallel Algo-
rithms. Prentice-Hall, 1989.

5. Duda and Hart. Pattern Classification and Scene Anal-
ysis. Wiley and Sons, 1973.

6. V. Fontaine, J. Hennebert, and H. Leich. Influence of
vector quantization on isolated word recognition. In Pro-
ceedings of Eusipco, pages 115-118, Edinburgh, 1994.

7. A. Geist and al. PVM: Parallel Virtual Machine, A
Users’Guide and Tutorial for Networked Parallel Com-
puting. MIT Press, 1994.

8. A. Gersho and R. Gray. Vector Quantization and Signal
Compression. Kluwer Academic Publishers, 1992.

9. J. Hennebert. Manual of the Parallel Oriented Speech
Toolkit. Chaire des Circuits et Systemes, 1996.

10. X. D. Huang, Y. Ariki, and M. A. Jack. Hidden Markov
Models for Speech Recognition. Edinburgh University
Press, 1990.

11. J. Picone. Signal modeling techniques in speech recogni-

tion. Proceedings of the IEEE, 81(9):1214-1247, Septem-
ber 1993.

12. L. Rabiner and B.-H. Juang. Fundamentals of Speech
Recognition. Prentice Hall, 1993.

