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ABSTRACT

This paper presents an effort to explore the utility of prosodic
information in language identification/ discrimination (LID) tasks.
We present our model and results from pair-wise LID tasks with
English, Spanish, Japanese and Mandarin using multi-speaker
elicited spontaneous speech and a selected set of prosodic
parameters. These languages represent four different types of
languages, varying in pitch use and timing. Parameters were
designed to capture pitch and amplitude contours on a syllable-by-
syllable basis, and to be insensitive to overall amplitude, pitch, and
speaking rate.

Results show that prosodic cues alone can distinguish between
some language pairs with results comparable to many non-prosodic
systems, indicating that prosodic parameters are highly useful in
automatic LID. However, the statistical relationships between a
number of individual features deduced from timing and pitch
measurements are needed to begin to capture such complex
perceptual events as rhythm. Strengths of individual prosodic
parameters and classes of parameters —primarily pitch, secondarily
duration and location — reflect differences between the four
languages mostly as expectated based on the linguistic literature,
suggesting that effective use of prosodic parameters is aided by an
understanding of the relationships between physical measurements
and perceived linguistic events.

1. INTRODUCTION

Although language identification/ discrimination (LID) has been
researched for the past 2 decades, a current renewed interest can be
linked to the establishment of the Oregon Graduate Institute Multi-
language Telephone Speech Corpus (OGI-TS), described in [6].
The utility of accurate LID includes the ability of automatically
tailoring a speech-based tool, such as online banking or information
retrieval, to the native language of the user.

LID approaches and results are summarized in [4] and [9]. Past
approaches include HMM and NN models, expert systems and
various clustering algorithms which have used raw waveforms,
broad phonetic features, detailed acoustic features, formant
vectors, pitch contours, vocabulary, and so on. Until recently, few
systems have included prosodic measures. Earlier systems that did
consider prosodic measures found such measures marginally
successful. Muthusamy [5] found that speech rate and syllable
timing offered little to improve results in his system. Savic et al. [7]
considered pitch change over the duration of the sentence and the

word, and found tendencies toward differences between tone
languages and Indo-European languages.

Our continuing effort explores the utility of prosodic information in
LID tasks. Prosodic cues include stress, thythm, and intonation.
Each cue is a complex, language dependent perceptual entity
expressed primarily as a combination of three physical (acoustic)
parameters: pitch, amplitude, and duration. While we do not expect
prosodic measurements to take the place of other measurements,
we show that prosody offers many benefits as an enhancement to
phonetic and word-based LID systems by being a semi-
independent source of information, resistant to noise corruption,
and computationally efficient to implement.

2. METHODS

NST’s “discrim” is a prosody-based language discrimination
system. As such it was never intended to be a stand-alone solution,
but only a component of a complete LID system incorporating
more traditional measures of phonetic events and word recognition.
The discrim system consists of an acoustic front end which extracts
pitch and amplitude information as a function of time, a prosodic
analysis unit which performs syllable segmentation and extracts
pitch and amplitude contour information on a syllable by syllable
basis, a statistical module which computes inter-syllable (timing
related) relationships in the pitch and amplitude information, a
training module which collects histograms of various features or
feature pairs, and a discrimination module which computes log
likelihood ratio functions from histograms and uses the log
likelihood ratio functions to evaluate “unknown” input in a
pairwise discrimination task.

We have examined discrimination between pairs of English,
Japanese, Mandarin, and Spanish. Fifty-second speech files from
roughly 90 speakers were used for each language. The files were
divided into 2 groups of 45 speakers each, designated “TR"” and
“DF.” A modified jack-knifing scheme, termed “cross-runs,” was
used. Given the TR and DF data for two languages, A and B, the
four cross-runs involve the four possible assignments of train and
run sets to the two languages in which the run data does not equal
the train data. In evaluating a feature or set of features for a
language pair, we typically looked at the minimum over the four
cross-runs and average over the four cross-runs of the figure of
merit derived on a speaker by speaker basis and percent-correct.
The FOM of a feature X for a pairwise discrimination of a set of
speakers drawn from two languages A and B is the difference in the
means of the LLR given each language divided by the sum of the
standard deviations of the LLR given each language, i.e.



FoM(X, A,B) = __E(LLR(X|A)) - E(LLR(X|B))
StD(LLR(X]A)) + StD(LLR(X|B))
Evaluating features according to the minimum, in particular, helps
eliminate features that may prove ‘“unstable”, i.e. detrimental to
system performance when new data with a different style mix is
presented.

Based on our own research and research reported in the linguistic
and phonetic literature, we implemented a large set of possible
prosodic feature measurements designed to capture pitch and
amplitude contours on a syllable-by-syllable basis. Considerable
effort was devoted to defining feature measurements that were
insensitive to overall amplitude, overall pitch, and speaking rate.
Individual features were evaluated by deriving a log likelihood ratio
function for the given feature and language pair and then evaluating
the effectiveness of that function as a discriminator.

The discrim system currently measures 224 individual features of
which normally only a small subset are used in the training and
discrimination modules. Individual features can be combined into
feature pairs. Features are running averages, deltas, standard
deviations, and correlations of measures in several classes:

*  Pitch Contour (shape of pitch contour on a syllable).

+ Differential Pitch (pitch differences — mid point or
max ~ one syllable to the next).

* Size (distance between syllables and syllable
duration).

* Differential Size (differenced distance between
syllables and syllable duration).

* Amplitude (shape of amplitude contour on a
syllable).

* Differential Amplitude (amplitude differences —
mid point or max — one syllable to the next).

* Rhythm (low frequency FFT of amplitude
envelope; syllables per second within breath
group).

* Phrase Location (initial/mid/final in breath group;
relative phrase position based on syllable distance
ratios).

3. RESULTS

We present results from pairwise LID tasks with English, Spanish,
Japanese and Mandarin using the OGI-TS database. These four
languages were chosen since they represent the traditional
categories of stress-timed, syllable-timed, mora-timed and tone
languages. The set of features used in this study consists of 220
features: 47 single features, chosen to span the classes above and to
include features previously found to be useful in LID, and 173
paired features, chosen to span the meaningful pairs of classes from
the list above and to include previously useful pairs.

For each language pair we represented each feature by the minimum
percent correct observed in the four cross-runs. We classified each
of the 220 features according to its class or class-pair and found the
“best” feature (highest minimum over 4 runs) in each class or class-
pair. In the resulting matrices [Tables 1-6], the column and row
headings “sg” refer to single features from the respective classes
(Rhythm, Phrase Location, differential Size, Size, differential Pitch,
Ritch, differential Amplitude, Amplitude). Other entries are for
paired features. All classes with features performing at or above
70% are in bold type face.

Most prominent in the charts is the strength of pitch (P and to a
lesser extent dP) both alone and in combination with almost every
other feature. Overall, we have found combinations of L and dP and
of L and P to be the most important in LID. The weakest distinctions
involve amplitude and differential amplitude (in italics), suggesting
that using amplitude features is a very poor LID strategy in that
differences from speaker to speaker could cause discrimination
results worse than chance.

The strength of pitch measures may be due to pitch as a signal
offering more possibilities for discrimination, including many
aspects of absolute and relative pitch, pitch change, slope, and
curvature over different portions of the syllable. The strength of
pitch measures may also derive from differences in perception of
pitch, amplitude and duration. Estimates by Laver {3] suggest that
the just-noticeable differences in pitch discrimination offer
considerably more distinction possibilities than in duration
discrimination. In the typical FO range, 50-480Hz, the just-
noticeable difference is +/—~ 1Hz. The just-noticeable difference
between durations of individual speech-segments (which range
between 30 msec and 300 msec) is 1040 msec. Thus we could
argue that there are effectively roughly 430 levels of pitch
compared to roughly 25 or fewer usable levels of duration.

The results of some of the strongest individual parameters reflect
correlations between perceptually based observations from the
linguistic literature and specific physical measurements. Results for
English vs. Other are presented in greater detail in [2] but are
discussed below as they relate to language-pair results within
prosodic parameter classes.
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Table 1: English vs. Japanese: Highest Minimum % Correct in
Cross-runs




English vs. Japanese: English is a non-tonal stress-timed language,
while Japanese is a mora-timed pitch accent language. English
tends to be more varied in overall pitch, has different shaped
syllable pitch contours, and has different timing features from
Japanese. These features are reflected in the strength of measures
including pitch peak location, raw syllable pitch change, syllable
pitch contour curvature, and delta distance between syllables. That
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Table 4: Japanese vs. Mandarin: Highest Minimum % Correct in
Cross-runs
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syllable. Timing measures are strong only in combination with pitch
measures.
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Table 2: English vs. Mandarin: Highest Minimum % Correct in
Cross-runs

English vs. Mandarin: Mandarin is a tone language, which is
reflected in the strength of P (and dP) parameters against all other
languages. The strongest measures in English vs. Mandarin
involve pitch slope and delta distance between syllables, the latter
reflecting differences in timing between the two languages.
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Table 3: English vs. Spanish: Highest Minimum % Correct in
Cross-runs
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English vs. Spanish: Spanish is described as a syllable-timed
language. Timing differences from English are reflected in strong
Rh and dS parameters, including low frequency power spectrum at
6Hz, raw and delta syllable duration, delta distance between
syllables, and syllable pitch slope.

Japanese vs. Mandarin: Japanese, a mora-timed pitch accent
language, is quite different from Mandarin, a tone language. The
overall greater pitch variation of Mandarin is reflected in strong
measures of pitch change, particularly in the early part of the

Table 5: Japanese vs. Spanish: Highest Minimum % Correct in
Cross-runs

Japanese vs. Spanish: Japanese mora-timing is often considered a
type of syllable-timing; Japanese and Spanish are therefore similar
in timing and are not easily discriminated based on rhythm and
duration measures. Though overall pitch variation is limited in both
languages, the difference is observable, as reflected in strong
measures of pitch peak location, average pitch slope, and pitch
change, particularly in the later part of the syllable.
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Table 6: Mandarin vs. Spanish: Highest Minimum % Correct in
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Mandarin vs. Spanish: The overall flat pitch of Spanish offers
good discrimination against Mandarin, reflected in very strong pitch
measures, particularly pitch change over the syllable. Although
timing differences are stronger than for Japanese vs. Spanish, the
strongest measures involving distance between syllables are strong
only in combination with pitch measures.

4. DISCUSSION

Although the most successful LID system should include segmental
as well as prosodic cues, our results show that prosodic cues alone
can successfully distinguish between some language pairs. The
combination of prosodic information from our system with an
existing phonetic LID system resulted in improved performance
over both original systems for the three language pair English vs.
Other [8].

We have found that prosodic measures can be successfully used in
distinguishing between different language types, but the
discrimination success rate and the performance of particular
features are language-pair specific. In the work reported here and in
ongoing work with additional languages, we have found that we can
to some degree predict the usefulness of a particular feature or
feature class for a pair of languages based on their diachronic
relationship or language families, synchronic categorization,
syllable structure, amount of pitch activity, and strictness of pitch
activity.

The results suggest that prosodic parameters are highly useful in
automatic LID, but the statistical relationships between a number of
individual features deduced from timing and pitch measurements
are needed to begin to capture such complex perceptual events as
thythm. Based on a cross-language study of rhythm, Dauer [1]}
concluded that “The difference between stress-timed and syllable-
timed languages has to do with differences in syllable structure,
vowel reduction, and the phonetic realization of stress and its
influence on the linguistic system.” Our findings support this
argument: while we have not been able to capture a measure of the
complex timing types (that is, stress-timed versus syllable-timed),
we have found a number of rhythm-related physical measures that
are useful in LID tasks. By considering a very large set of individual
prosodic features and combinations of prosodic features, we have
captured stronger prosodic cues for LID tasks than previously
achieved. The correlation between results from specific features and
expectations based on the pitch variation and timing structure of a
language suggests that familiarity with the linguistic specifics of a
language allows us to make predictions about the usefulness of
particular prosodic features in the discrimination of a given
language-pair.

Among the current system's strengths are:

* itrequires little manual input during training, only
the true identity of the language being spoken;

* it is relatively computationally efficient, running
faster than real-time on a small SUN workstation;

* the raw features it extracts are relatively immune to
noise and other corruption thus rendering the

system particularly suitable for noisy or corrupt
data and relatively insensitive to changes in
transmission channel.

The main technical weaknesses of the current system are that

* the probability distributions are only estimated for
single features and feature pairs, not for more
complex combinations;

 the simple summation of many log likelihood ratio
functions is thought not to be an optimum strategy
for decisions based on multiple features.

These issues are currently being addressed.
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