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ABSTRACT

In this paper, several analyses relating facial motion with
perioral muscle behavior and speech acoustics are described.
The results suggest that linguistically relevant visual
information is distributed over large regions of the face and can
be modeled from the same control source as the acoustics.

1. INTRODUCTION

Our approach rests upon three observations. First, faces
provide linguistically useful information through time. For
example, speech perception in difficult acoustic conditions is
enhanced when the speaker’s face can be seen, but there is a
minimum frame rate (16-18 fps) below which visual information
begins to be lost [8]. Second, articulators such as the lips and
jaw simultaneously shape the vocal tract and deform the face.
Third is an observation derived from our analyses of perceiver
eye motion during audiovisual speech perception tasks [6];
namely, perceivers do not need fine-grained detection of oral
aperture and position to extract sufficient visual information.

These observations have led to two hypotheses. First is that
phonetically relevant visual information arises necessarily from
the process of generating the speech acoustics and therefore
should be modeled from the same neuromotor control source. To
this end, our physiological model of speech production is
being extended to include linguistically relevant facial motion
[7]. Of course, faces convey all sorts of linguistic and other
information, which we may or may not be able to distinguish
some day. For now, we do not clearly separate strictly phonetic
visual correlates from suprasegmental and higher-order
communicative events denoting emphasis, mood, sincerity, etc.

In the model, schematized in Figure 1, motor commands to
muscles controlling the vocal tract articulators are conditioned
serially by phoneme input strings whose acoustic and
articulatory consequences have been acquired by neural
network training, and globally by a smoothness constraint on
the neuromotor control signal (minimum motor command
change) indexing speaking rate and style. Time-varying vocal
tract configurations are generated according to the dynamics
relating muscle activation and articulator motion. Finally, these
configurations serve as partial input to a muscle-based model of
facial motion. The output of the model is audiovisual behavior,
parametrized by the physiology and guided by speaker
intentions (see [2, 7]).

The second hypothesis arose from the finding that perceivers
extract the necessary visual information at relatively low
spatial resolution. Notably, intelligibility scores and perceiver
eye motion patterning are unaffected by changes in size of the
visual field (e.g., gaze still remains fixed on the speaker’s eyes

about 50% of the time), even when the visual stimulus is so
large that perceivers must use the visual periphery to detect the
mouth while gazing at the eyes. We hypothesize that perceivers
use the high temporal resolution of the visual periphery to
detect well-learned motion correlates to phonetic events, and
further that these correlates are distributed over much larger
regions of the face than just the oral aperture.
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Figure 1: Scheme for the production of audiovisual events.

In what follows, we address these issues by showing that: (1)
lip motion and shape information can be recovered from remote
facial locations; (2) acoustic characteristics such as RMS
amplitude are better recovered from the entire face than just from
the region of the oral aperture; and (3) orofacial motions can be
estimated fairly well from muscle EMG using second order
autoregressive techniques. Finally, we briefly describe a
promising technique for recovering facial motion data from
video images analogous to the 3D marker position data.

EXPERIMENTATION

In a previous experiment, video, 3D marker positions, speech
acoustics and surface EMG from perioral muscle activity were
used to compute muscle-to-movement mappings and to
parametrize a muscle-based facial motion model [3, 5, 7]. In
computing the mappings between EMG activity and articulator
position, velocity, and acceleration, the best results were



obtained for position while the derivatives were progressively
worse. While this may have been partly due to working with
the noisy derivatives of small motions, the facial system may be
better modeled by estimation of stiffness from position than
muscle force from mass and acceleration. That is, the elastic
properties of the face are not affected by deformations caused by
changes in vocal tract configuration. Thus, the system returns
to equilibrium from any deformation.

Figure 2: Schematic face showing positions of 11 ireds and
insertion sites for 8 muscles: ABD, Mentalis, DLI, OOl, DAO,
OO0S, LLS, LAO/Zygomatic. The dashed line separates “inner”
from “outer” marker groups. The cross denotes coordinate
origin.
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Figure 3: Positions (xyz) of the 5 inner markers and the chin
(P1) estimated from the motion of the 5 outer markers. Axes are
scaled in mm and R? values are at the lower right.

For the current experiment, a number of improvements were made
over the previous paradigm. A larger and more varied corpus of
scripted and spontaneous sentences, vowel sequences, and
facial gestures were recorded for two subjects in two back-to-
back.sessions. Each experimental session used the same EMG
insertions but different motion tracking procedures — video
and infrared marker tracking. Intramuscular EMG activity was
recorded for 8 muscles instead of 6. One of the additional
muscles was ABD for the jaw. Use of hooked-wire rather than
surface electrodes improved signal bandwidth, and contributed
to a cleaner facial image for the video condition. For the marker
tracking condition, head-motion corrected, 3D positions of 11
infrared LEDs (ireds) were recorded at 60 Hz to match the field
rate of the video condition. The positions of the ireds and
contralateral EMG recording sites are approximated in Figure 2.
The EMG and audio signals were recorded at 2500 Hz.
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Figure 4: RMS amplitude of the speech signal (thin line) is
estimated (thick line) from 11 markers (top), the 5 outer markers
(middle), and the 5 inner markers (bottom).

In this section, the hypothesis that linguistically relevant
visual information could be distributed over wide regions of
the face is addressed by two analyses. In the first, we show that
the motions of markers immediately surrounding the lips are
highly correlated with and recoverable from those further away
(see Figure 2). Using an MMSE (Minimum Mean Square Error)
procedure, the 3-D motions of the “inner” 5 markers as well as
the marker placed under the chin were approximated by linear
combinations of the motions of the outer markers. The results for
the utterance “When the sunlight strikes raindrops in the air,
they act like a prism and form a rainbow” are shown in Figure 3.



The xyz axes of motion correspond to the vertical, lateral, and
protrusional (perpendicular to the face plane) dimensions. The
correlation coefficients (R?) are generally very high. The lowest
values are for the lateral motion of the two upper lip markers
(P2, P8) whose ranges of motion are also the smallest.

In the second analysis, we tested the degree to which the
marker motions could linearly approximate the RMS amplitude
of the speech signal. A reason for doing this was to determine
how well the facial motion reflected the gross segmental
structure of the speech acoustics. Figure 4 shows the estimation
results for all points, as well as the outer and inner marker
subsets. The correlations (R?) for the two marker subsets are
quite high and very similar, suggesting that segmental
structure is equally well-represented by the oral and more
distant regions of the face. However, the substantially higher
correlation values for the motion of the entire marker set
indicate that the independent variance components of the two
regions contribute positively to the recovery of at least one
aspect of the speech acoustics.

FROM EMG TO OROFACIAL MOTION

The mapping between orofacial muscle activity and motion is
inherently nonlinear. However, since most muscles involved
during speech production operate far below their limits, it may
be possible to approximate the system with a simpler linear
model. To test this, the 3D motions of the 11 face markers were
estimated from the EMG of the 8 muscles. The EMG signals
were rectified and processed with an amplitude-weighted peak
counting routine. This gave better results than simple peak
counting or median filtering (among other methods tried). A
second order AR model was used of the form

Yy, = 4’”—1 + Aﬂn—2 + ‘qun—l

where y, was the output position vector and uw,; the EMG
input vector for the previous sample (17ms).

The training data consisted of 5 repetitions of 2 sentences and 4
of 5 repetitions of a third (S3); the fifth repetition of S3 was
used for testing. The simple model’s results were generally as
good as the more complex ARMA (Auto-Regressive-Moving-
Average) models we tested, and were comparable to our
nonlinear modeling using neural networks [3].

Figure 5 shows two stages of estimation as well as
representations of the EMG input and audio signal for the
utterance, After papa beamed aboard the Love Boat, mama
popped their baby into the bubbling mud bath. The top trace
shows the fairly large estimation error for the chin marker
position (P1). With EMG data for only the jaw opening muscle
(ABD), this is no surprise. In the first stage, the jaw estimation
error was normalized and subtracted from the normalized
position errors of the other face markers. In the second stage, the
corrected marker positions were re-estimated and the results are
shown in the next five traces (filled dots in Figure 2). This
substantially improved the correlations for the markers on the
lower lip (P3) and midway between lip and chin (P5), but had
little effect on the upper lip (P2), cheek (P11) and lip corner
(P7) markers. Results were consistent for the other 5 markers
(hollow dots, Figure 2): Correlations for the off-midline lip
markers were nearly identical to ones shown. Correlations for

the other cheek and chin markers, depended on the distance
from the lips and jaw.
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Figure 5: Data and estimation results of facial motion from
EMG using an AR model.

Although the motions were small, good estimations for the
upper lip were obtained because there were sufficient muscle
data. However, the good estimation for the more distant cheek
areas was surprising, as we expected their motion to depend on
muscles we could not record, such as temporalis. The poor
estimation of the lip corners was due to the small range of
motion (<2mm).

OPTICAL FLOW OF FACIAL MOTION

Finally, we discuss a video analysis technique in which pixel
position differences between successive images, or optical flow,
can be used to quantify facial motion. There are many
techniques of optical flow [1]. The Horn and Schunk [4] method
was chosen for its simplicity, but is prone to error when the
motions are small and the curvature (out of the face plane) large.
Figure 6 shows an image from a sequence of 150 for the
sentence, When the sunlight strikes raindrops in the air .... The



gray areas on the eyes, chin, nostrils and headband were used
to correct head motion. Seven rectangular analysis regions were
defined to capture the motion of the lips, the lip corners,
adjacent cheek regions, and the chin. In each region, the
horizontal and vertical components were summed separately.

Figure 6: Image showing 7 regions defined for optical flow
analysis.

Figure 7 shows results for 5 of the 7 regions across the full 150-
frame sequence. Although the scales differ, there are clear
correlates between the cheek and the other regions. This
preliminary result suggests that we should be able to subject
the image data to the same analyses discussed in the previous
sections. Comparable results would demonstrate to us the
viability of this cheaper and less invasive data collection
technique.
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Figure 7: Vertical and, in the lower panels, horizontal optical
flow of 5 regions are plotted over time (5s = 150 frames) for one
sentence.

CONCLUSION

In support of the notion that phonetically relevant orofacial
behavior is not limited to the immediate region of the lips, our
results indicate coherent motion correlates to speech behavior
across wide regions of the facial surface. Further, we have
demonstrated that these complex motion patterns and even
aspects of the acoustics, can be recovered from the underlying
muscle activity. Despite the promise of this approach, a very
crucial question remaining to be clarified is the relation
between facial motion and speech perception.
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