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ABSTRACT

This paper deals with a new phoneme recognition system
based on a model of human auditory system. This system is
made up of a model of human cochlea and a simple multi-
layer recurrent neural network which has feedback connec-
tions of self-loop type. The ability of this system has been
investigated by a phoneme recognition experiment using a
number of Japanese words uttered by a native male speaker.
The result of the experiment shows that recognition accura-
cies achjeved with this system in the presence of noise are
higher than those obtained by a combination of frequency
spectral analysis by DFT and conventional feedforward neu-
ral network and that the cochlea model effectively prevents
the deterioration due to noise of recognition accuracy.

1 INTRODUCTION

The superb ability to recognize speech sounds of the hu-
man auditory system seems to suggest that modeling the
human auditory system properly may lead to a realization
of some good scheme of processing speech signals for reliable
recognition of speech. The present work is a challenge to this
idea.

Since the human auditory system is composed of the au-
ditory periphery and central nervous system comprising in-
finitely many neurons, modeling the auditory system nec-
essarily requires modeling both the cochlea and neurons.
Recently we have developed a novel model of the human
cochlea [1] called “a feedback model for cochlea”, which can
be used as a kind of spectrum analyzer for speech sounds.
To develop this model we have noticed specifically two kinds
of interaction between the basilar membrane and other con-
stituents of the cochlea. One is an electro-mechanical inter-
action between the basilar membrane and outer hair cells,
and the other is a fluid-mechanical interaction between the
basilar membrane and lymph within the cochlea. Taking
these interactions properly into account has led to the feed-
back model for the cochlea, which can not only represent but
elucidate some important cochlea characteristics including
the sharp frequency selectivity of basilar membrane oscilla-
tion.

Recently a simple multi-layer recurrent neural network
which has feedback connections of self-loop type has been
proposed as an attractive tool for recognizing speech
sounds (2]. The cochlea model and the recurrent neural net-
work have been combined to form a reliable phoneme recog-
nizer to be used as a front end of continuous speech recog-
nition system. The ability of this system has been investi-
gated by a phoneme recognition experiment using a number
of Japanese words uttered by a native male speaker. The re-

sult of the experiment shows that recognition rates achieved
with this system are higher than those obtained with other
conventional recognition systems. Some important findings
about the system include the following:

1. It shows a high phoneme discriminating power not only
for vowels but for consonants in the presence of back-
ground noise.

2. The cochlea model is capable of effectively preventing
the deterioration due to noise of its recognition accu-
racy.

3. It has a capability of classifying vowel sounds, even
when two adjacent formant peaks of them merge into a
single peak.

In what follows, first the phoneme recognition system will
be described in detail, then the performance of the system
in the absence of noise and its robustness for noise will be
discussed.

2 THE PHONEME RECOGNITION
SYSTEM

2.1 The cochlea model

As mentioned above, the phoneme recognition system is
composed of the cochlea model and the recurrent neural net-
work. The cochlea model will be described in brief. To
develop this cochlea model we have noticed specifically two
kinds of interaction between the basilar membrane and other
constituents of the cochlea. One is an interaction due to
mechanical-to-electrical and electrical-to-mechanical trans-
ductions between the basilar membrane and the outer hair
cells, and the other is a fluid-mechanical interaction between
the basilar membrane and lymph within the cochlea. The
model is able to elucidate some important cochlea charac-
teristics including the sharp frequency selectivity of basilar
membrane oscillation due to an active pressure source which
1s supposed to exist within the cochlea.

Figure 1 depicts the block diagram of a basilar membrane
filter which represents the behavior and function of a small
section of the basilar membrane. Here, § and G.(s) rep-
resent, respectively, the displacement and transfer function
of the small section which is at a distance z from the oval
window. P denotes pressure difference between the scala
vestibuli and scala tympani at the position z and K(z) is a
gain factor. G:(s), K(x), and the fluid-mechanical interac-
tion are expressed, respectively, by the following relations:
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Figure 1: The block diagram of a basilar membrane fil-
ter.
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Figure 2: The structure of the three-layered recurrent
neural network.
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where L(z), R(z), and ﬁ represent, respectively, the mass,
damping, and stiffness of the small section at z, and p, H,
and a are the density of the lymph, the height of the scala
vestibuli, and a constant, respectively.

Since the hair cells are known to produce electric poten-
tials proportional to the velocity é of the basilar membrane
only when the basilar membrane moves toward the tectorial
membrane, the cochlea model output is defined as half-wave
rectified versions of velocities of 175 equally divided sections
of the basilar membrane. The output which the model pro-
duces when a speech signal is applied to it is considered to
represent a kind of frequency spectrum of the signal in the
form of 175-dimensional vector.

2.2 The recurrent neural network

Figure 2 exemplifies the structure of the three-layered re-
current neural network with feedback connections of self-loop
type around output layer units, which is used in the system.
This network has been found to surpass other networks of
feedforward type and the recurrent network with feedback
connections around hidden layer units 3], since this partic-
ular feedback structure provides the network with ability to
store up incoming time-varying informations.

The cochlea model output for a phoneme input, which is
a 175-dimensional vector, is fed to the network to decide on
the class of the phoneme.
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Figure 3: The cochlea model output in the form of sound
spectrogram for (a)clean and (b)noisy(SNR 0dB) plosive
sounds /b/.

3 SPECTRAL ANALYSIS BY THE
MODEL

3.1 OQutput of the cochlea model

Figure 3 shows the cochlea model output in the form of
sound spectrogram for clean and noisy (SNR 0dB) plosive
sounds /b/. The effect of noise is found to be very little.
This demonstrates the robustness of the model for noise.
This robustness can be ascribed to the feedback structure of
the model which serves to effectively reduce noise power and
to enhance signal power.

3.2 Vowel spectra

Figure 4(a) shows a frequency response of the model to a
vowel fo/ and Figure 4(b) is an LPC spectrum of the same
vowel. In the frequency response of the model the first and
second formant peaks can be clearly seen to be separated,
while in the LPC spectrum the two formant peaks merge into



14000 ¢

Vagtinde
§
il

Vegrade )

Figure 4: (a)A frequency response of the model to a
vowel /o/. (b)An LPC spectrum of the same vowel.

a single peak. This demonstrates the formant discriminating
power of the cochlea model.

3.3 Fast spectral analysis

To obtain the frequency response of the model requires
solving a great number of differential equations simultane-
ously. So computation time is a serious problem.

There is, however, a way of calculating the frequency re-
sponse fast enough to render a real time spectral analysis of
speech sounds possible. As is clear from Eq.1, the model out-
put is given as the convolution in time domain of mode] input
and the impulse response, i.e., the inverse Laplace transform
of G;(s). If the model input is decomposed into a num-
ber of frequency components by means of the fast Fourier
transform, then it will be possible to analytically evaluate
the convolution integrals, reducing considerably computa-
tion time. Through the use of this method one can calculate
very quickly the frequency response of the model.

4 PHONEME RECOGNITION
EXPERIMENT

To evaluate the ability of the system a phoneme recog-
nition experiment was performed on the proposed phoneme
recognition system. The method and result of the experi-
ment will be described below.

4.1 Phoneme data

A set of phoneme tokens was derived from a Japanese word
database provided by ATR Interpreting Telephony Labora-
tories, Kyoto, Japan. This database contains 5,240 Japanese
words digitized at 20kHz, which were uttered by a single male
speaker in a quiet environment.

Figure 5 demonstrates how phoneme vectors are generated
from power spectra of phoneme tokens which the cochlea
model puts out as 175-dimensional vectors every 2ms. By
replacing every five successive components of each of such
vectors with their average these vectors are reduced to 35-
dimensional power spectral vectors. A time window whose
length is 26ms is shifted over those 35-dimensional vectors,
8ms at a time. Thirteen windowed vectors are added up to
yield a new 35-dimensional vector. Thus this window pro-
duces a 35-dimensional vector at each position and 7 such
vectors altogether for each phoneme token. Three such vec-
tors are concatenated to yield a 105-dimensional vector. This
process produces five 105-dimensional vectors altogether for
each phoneme token and those vectors which express the
spectral variation of the phoneme token under consideration
are used as input vectors for the recurrent neural network.

4.2 The phoneme recognition experi-
ment

The phoneme recognition experiment was carried out to
evaluate the phoneme discriminating power of the system
in the absence of noise and its robustness for noise, using
clean and noisy phoneme tokens. Table 1 shows a result
of the experiment performed using clean phoneme tokens
of 5 Japanese vowels and 18 consonants and compares the
average recognition rate (%) of the system comprising the
cochlea model and the recurrent neural network with that
of two similar phoneme recognition systems in which the
cochlea model is replaced with spectral analysis by the dis-
crete Fourier transform (DFT). In one of those systems the
recurrent neural network (RNN) is also replaced with a con-
ventional feedforward neural network (NN). All the details
of those neural networks are given in Table 2.

Table 1 clearly indicates that the RNN surpasses the NN in
phoneme recognition accuracy. This may suggest that feed-
back loops within the RNN function as memories for storing
up time-varying spectra of speech sounds and improve ap-
preciably the phoneme discriminating power of the network.

It was found that the system with the cochlea model is
able to correctly recognize vowels, even when two adjacent
formant peaks of them merge into a single peak.

Figure 6 shows a result of the recognition experiment per-
formed for voiced plosives /b/, /d/, and /g/ in the presence
of white noise. It is clear from the figure that compared
with the system using the spectral analysis by the DFT,
the system using the cochlea model achieves not only higher
recognition accuracies but a less deterioration due to noise
of recognition accuracy. Under the SNR of 10dB, the dete-
rioration of recognition rate is 3.1% with the system using
the cochlea model, while 44.9% with the system using the
DFT, and the recognition rate obtained with the former is
27.9% higher than the recognition rate obtained with the
latter. One of the causes for this greater deterioration of
recognition rate with the system using the DFT seems to be
preemphasis which is needed to provide the spectral analysis
by the DFT with a proper high frequency enhancement.



Table 1: Comparison of average recognition rates(%).

cochlea model DFT
RNN RNN | NN
5 vowels 99.4 99.1 | 97.0
18 consonants 85.3 85.1 | 63.3

Table 2: Description of the neural networks.

cochlea
model DFT
RNN RNN"T NN
dimensionality 105 112 112
of input vector (35x3) | (16x7) | (16x7)
number | input layer 105 112 112
of hidden layer 40 40 26
units output layer 5,18 5,18 5,18

phoneme token

26ms (=13x2ms)

'13th frame

5 CONCLUSIONS

A new phoneme recognition system based on a model of

human auditory system has been described above. For the
purpose of evaluating the ability of this system a phoneme
recognition experiment was performed using a number of
phoneme tokens derived from a Japanese word database.
Findings from the resuit of the experiment can be summa-
rized as follows:

1. The cochlea model is capable of resolving merged for-

[1]

[2]

3]

mant peaks of vowels. This leads to a correct recogni-
tion of vowels which have such formant structures.

. The cochlea model has a higher formant resolving power

than the DFT, which leads to higher recognition rates
of the system for vowels.

- The system using the cochlea model achieves higher

recognition rates in the presence of white noise and a
less deterioration due to noise of recognition rate than
the system using the DFT.

. A fast algorithm is available for calculating the fre-

quency response of the cochlea model to render a real
time spectral analysis of phoneme tokens possible.
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Figure 5: Generation of 105-dimensional phoneme vec-

tors from phoneme tokens.
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Figure 6: Average recognition rates of the system in the
presence of noise.



