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ABSTRACT

This paper investigates the robustness of cepstral based fea-
tures with respect to additive noise, and details two methods
of increasing the robustness with minimal need for a-priori
knowledge of the noise statistics.

The first approach is a form of noise masking which adds a
fixed offset to the linear spectral estimate.

The second is a form of sub-band filtering, again in the linear
domain, which estimates the dynamic content of the speech
using Fourier transforms. This avoids negative values nor-
mally inherent in such filtering and which presents difficulties
In deriving log estimates.

Both methods are shown to provide useful levels of robustness
to additive noise, for example, speaker identification error
rates in SNR mis-matched conditions of 15 dB are reduced
from 60.5% for standard mel cepstra to 13.8% and 24.1% for
the two approaches respectively.

1 INTRODUCTION

Static features, computed from a single windowed frame
of speech, attempt to capture the instantaneous (assumed
quasi-stationary) spectral characteristics along the time
course. Dynamic features (velocity and acceleration) attempt
to capture the dynamics of the speech by processing a short
sequence of static features. A similar idea of relative spectra
is the motivation behind Hermansky’s RASTA [3], which also
aims to capture changes in spectra. The associated process-
ing involves sub-channel filtering, and when applied in the
linear spectral domain gives rise to practical difficulties in
computing the cepstra. Following the filtering, negative val-
ues can and normally will occur inhibiting the conventional
log function evaluation. Hermansky overcomes this problem
by adding a fixed offset to the output and notes an increase
in robustness to additive noise. This raises the interesting
question of the level of offset and Hermansky shows that the
optimum lies between the level of noise and the level of the
speech signal. We demonstrate that the mere inclusion of the
offset itself has a major beneficial effect in reducing sensitiv-
ity of cepstra to additive noise.

We also propose a simple magnitude Fourier approach which
provides an alternative solution to the negative spectra prob-
lem and at the same time gives dynamic parameters from a
short sequence of static frames. The features are termed
Fourier sub-band filtered coefficients (F-SBF).

1.1 Experimental Base

As a benchmark, the effect that noise has on the recognition
performance is shown in Figure 1. Here the task is speaker
identification (SI) and the experimental conditions are as fol-
lows.

The population is 20 speakers taken from the BT CONNEX
database. An alphabet vocabulary is modelled using a text-
independent VQ classifier consisting of 32 centroids, and a
weighted Euclidean distance metric is used throughout. Fea-
tures are MFCC-14 from a frame size of 25.6 ms, with a 50%
overlap. The linear regression A features are as specified
in [2], and computed over 6 static frames. Gaussian noise is
added to the clean train/test data.

Three experiments are performed, ‘cn’, ‘nc’ and ‘nn’. The
first letter indicates whether clean or noisy data is used in
training, with the second letter indicating the conditions used
in testing. When noise is added to either the training or test
data, the level is as indicated on the abscissa. The ‘cn’ and
‘nc’ experiments relate to cross-testing, while the ‘nn’ profiles
relate to matched noise conditions.

It is seen that for the cross-test experiment, cn, errors rise
rapidly even in moderate amounts of noise, yielding errors of
circa 60% at an SNR of only 15dB. Comparing this to the
performance in clean conditions, with an error rate of just
3.4%, it can be seen that the effects of noise are marked.

In comparison, the ‘nn’ case where the models are trained
using a-priori knowledge of the noise conditions in testing
shows a greater degree of robustness, for example when the
test speech has an SNR of 15dB, the recognition error rate is
just 12.9%.

The A-MFCCs, give similar results to those of the static
feature but with the A features generally faring worse in high
SNR conditions.

2 STATIC NOISE MASKING

2.1 Overview

The technique of noise masking, originally investigated by
Klatt [6], can be viewed as the antithesis of spectral subtrac-
tion techniques. The basic tenet of operation is to maintain
parity between training and test phases, with noise accepted
as an inevitable circumstance. Klatt artificially maintains a
minimum power in the filter bank, representative of the noise
spectrum found in training. More recently Varga [9] provides



S1 % error

SI & error

100

3

ASI Error (%)

0 0
Clean 24 21 18 15 12 9 6 3 Clean 24 21 18 15 12 9 6
SNR SNR

Figure 1: MFCC(left) and A-MFCC(right) SI recognition
error rates. cn: clean model, noisy test data, nc: noisy model,
clean test data, nn: noisy model and noisy test data. The
SNR is as indicated on the abscissa.

a study of various noise masking algorithms, with Mellor [7]
providing equivalent effects but masking in a transform do-
main, as opposed to a log spectral one.

Here we examine the limits of noise masking by adding a
fixed constant to each band-pass (mel) filter, prior to the
log function In the cepstral analysis. Thus the cepstra is
evaluated from

cepstra = Fper(log(C + S(w))) 1)
where Fpcr represents the cosine transform, S(w) the speech
spectra, and C the masking level. The motivation is to lessen
the sensitivity of cepstra to additive noise by a swamping
effect.

A direct comparison can be drawn with Hermansky’s exten-
sion to RASTA processing of the PLP feature [4]. To over-
come the difficulty of applying log-like non-linearities to the
band-pass filtered power spectrum (which could have nega-
tive values following the filtering), Hermansky proposes the
approximation

cepstra = Fper(log(l + J.S(w))) (2)
He then shows that the constant J can be designed to min-
imise noise sensitivity, although the contribution of J and of
the RASTA processing itself is unclear. It is obvious that
Hermansky’s J constant and our noise masking (fixed) offset
are directly equivalent.

2.2 Experimental Results

Figure 2 displays the SI error rate when testing under clean
conditions, and that of 15, 9 and 0db SNR versus masking
level. In all cases, clean models are used.

The most significant result of Figure 2 is the improvement
with the addition of masking, even with a test SNR as low
as 0db. As can be expected, a larger masking level C is
needed to combat a lower SNR. It can also be seen that the
test SNR is fairly insensitive to the masking level used, ie
a single masking level caters for a range of test SNRs. The
optimum masking level is SNR dependent, and a conflict of
two contrary effects.

The approach alters the log non-linearity and in this sense is
similar to the root homomorphic work of Alexandre [1] and
the work of Hermansky. Unfortunately it is shown empiri-
cally that altering the non-linearity is a double-edged sword
in terms of reducing the sensitivity to changes in noise, as
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Figure 2: SI recognition error rate for the static noise mask-
ing technique. The masking level (C) is as indicated on the
abscissa, clean training models are used in all cases, and the
test SNR is as indicated on each individual profile.

it also reduces the sensitivity to the content of the speech,
increasing the errors. [t also removes the level independence
provided by the log function with a single term.

The effect of altering the non-linearity is displayed in a sim-
ple manner in Figure 3. The top-right graph has no masking
and shows the output of 32 mel-scaled filters for the utter-
ance “a” (/ey/). The following 3 graphs each include an in-
creasing masking level, from C=100, which is an approximate
optimum for recognition at 15dB, and for masking levels of
1000 and 10000 respectively. The three profiles on each graph
represent clean, 6 and 0dB SNR from the bottom up.

As the masking level is increased, the profiles for different
SNRs tend to converge, reducing the spectral distance be-
tween mis-matched SNR conditions. Also there is a tendency
for a heavy masking level to remove detail from the spectra.
For instance, comparing the clean profile with no masking
and with a masking level of 10000, a significant amount of
the speech spectra is swamped by the masking spectra re-
ducing the ‘individuality’ of the spectra. It is this effect that
reduces the recognition accuracy in high masking levels.

3 ESTIMATING SPEAKER DYNAM-
ICS USING SUB-BAND FILTERING

Although other techniques for measuring speech dynamics
exist, such as A-cepstra [2], and the 2 dimensional cepstra
based work of Kitamura [5] and Vaseghi [10], these tend to
be affected in a complex manner by additive noise as they
essentially operate on log spectral estimates [8].

This paper introduces a new form of sub-band filtering (SBF),
based on Fourier analysis of sub-bands in the linear domain,
and thus termed Fourier sub-band filtering (F-SBF). The
form of F-SBF used here estimates the dynamic content of
the speech, assuming the noise to be stationary relative to
the speech dynamics.

The important merits of the F-SBF approach are:

e no a-priori knowledge of the noise is needed,
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Figure 3: The log mel-filter output for the a voiced part of
the utterance “a”. The top-left graph has no noise-masking,
the following graph has a masking level optimum for approxi-
mately 15dB, C = 100, with the 2 following graphs increasing
the masking level by an order of magnitude successively. The
three profiles on each of the graphs are, in descending order,
for a clean portion of the speech, and for SNRs of 6 and 0dBs
respectively.

¢ additional computation {over standard cepstra) is min-

imal,

e other benefits of standard cepstra are retained: good
overall performance, pitch filtering and a compact rep-
resentation.

A practical difficulty of processing spectral estimates in the
linear domain, when such estimates are to be converted to
cepstra, is the requirement to retain positive values for the
estimates, essential for the subsequent log function. This
problem exists both with the popular spectral subtraction
approach and the sub-band filtering such as J-RASTA, for
example. Solutions include clamping and using a fixed offset.

Here, the Fourier output (magnitude term) overcomes this
difficulty in providing estimates of dynamics which are in-
herently positive and can therefore be followed directly by
the log and cosine operations.

Equation 3 defines the process:

c; = Fper.log . FmaglSi{(w)| (3)
where c; is the j’th feature coefficient, S;(w) is the set of
filter outputs at time i, Frmqq is the magnitude of the Fourier
transform, Fpcr is the discrete cosine transform.

3.1 Experimental results

The same experimental conditions as detailed above apply.
Figure 4 shows the recognition % error profiles for the F-
SBF features, and also for standard MFCCs. In all cases,
the models are trained in clean conditions, and tested with
speech with an SNR as shown on the abscissa. Gaussian
white noise is used.
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Figure 4: SI % error rates for MFCC and F-SBF. Clean mod-
els are used in all cases, with the test SNR as indicated on
the abscissa. The 3 recognition profiles for F-SBF relate to
the number of frames used to obtain the relative spectral
estimate, in this case 4, 8 and 16 frames.

The three F-SBF profiles relate to the number of consecu-
tive spectral observations used to obtain the estimate of the
dynamic content in this case 4, 8 and 16.

The F-SBF features clearly out-perform standard MFCCs in
cross-test conditions. For example, at 15dB SNR the cross-
test MFCC error rate is 60.5%, the F-SBF error rate is 24.1%,
using 16 spectral observations to measure the dynamic con-
tent. As is noted with the static noise masking technique,
a compromise between performance in clean and noisy con-
ditions has to be made. Longer windows result in a feature
less responsive to noise, but which do not perform as well in
clean conditions. Interestingly, using dynamic features with
short windows results in a performance in clean conditions
similar to that obtained by using standard MFCC features.

3.2 Pitch response of the F-SBF feature

One of the useful characteristics of standard cepstral analysts
is attenuation of the pitch component.

Figure 5 shows the effect of pitch on both the mel-based F-
SBF feature and standard MFCCs. The full feature order is
used in both cases. For the F-SBF feature, the parameters
used are 256 sample window, with 128 sample overlap and
sub-band filtering is performed over 8 frames. The coefficient
is denoted on the x-axis, with the pitch impulse frequency on
the y-axis. The value of the coefficient is indicated by the
z-axis.

The comparison between Figure 5 left (F-SBF) and right
(MFCC) shows that the F-SBF feature is comparable, in
terms of sensitivity, to standard MFCCs upto a pitch fre-
quency of approximately 200 Hz. Pitch frequencies exceeding
200Hz have a major effect on the higher order coefficients of
standard mel-based analysis. These effects are attenuated in
the mel-based F-SBF feature, permitting the use of a wide
range of coefficients without pitch influence.
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Figure 5: The effects of pitch on the mel-based F-SBF fea-
ture (left) and standard MFCCs (right). The pitch signal is
represented by single impulses chirped between 100-300 Hz.
The F-SBF parameters are over 8 frames.

4 CONCLUSIONS

This paper has demonstrated the adverse effects of additive
noise on cepstral based features by examining recognition
performance. A technique called static noise masking at-
tempts to make the features more inherently robust, with
minimal need for a-priori knowledge of the noise statistics.

The conclusions of static noise masking is that altering the
non-linearity is beneficial in terms of increasing the robust-
ness to additive noise, with the cross-test errors reduced from
60.5% to 13.8% for an SNR of 15dB.

Although masking levels are to some extent SNR dependent
a low sensitivity to a sub-optimal masking value is demon-
strated.

A form of Fourier sub-band filtering in the linear spectral
domain is demonstrated. This feature is unaffected by addi-
tive spectral components constant over the window duration,
but possibly variable otherwise, for example between test and
training.

A trade-off between robustness to noise, and performance
in clean conditions can be made by altering the number of
frames over which the relative estimate is made: estimat-
ing using more frames is more robust to noise, while using
fewer frames gives better performance in clean conditions. A
directly comparable cross-test SI error rate is reduced from
60.5% for MFCCs to 24.1%.
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