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ABSTRACT

This paper proposes improved methods of smoothed spec-
tral subtraction to enhance the recognition performance of
a frequency-weighted HMM (HMM-FW) in very noisy en-
vironments. The conventional spectral subtraction tends to
produce discontinuity in estimated power spectra. This dis-
tortion is undesirable for HMM-FW which uses group delay
spectra as feature vectors. In order to remove this distor-
tion, this paper proposes two frequency smoothing methods
in log-spectral domain: (1) a low-pass liftering by DCT, and
{2} a weighted minimum mean square error method (WMSE)
which fits cosine series to an estimated log-power spectrum.
The results shows that the smoothers are very effective
under very noisy conditions, especially for the frequency-
weighted HMM. The WMSE method combined with HMM-
FW achieves the highest recognition accuracies, for instance,
improving recognition rate from 68% to 88% at -6dB SNR
of car noise.

1. INTRODUCTION

The approaches to noise robust speech recognition are
broadly classified into speech enhancement and robust pat-
tern matching. In HMM-based pattern matching, adapta-
tion methods such as PMC [1] are very successful at moder-
ate noise levels. However, under severe noisy condition, the
discrimination between classes may be reduced due to the
variance of the signal spectra. Another approach is robust
HMMs (2],(3]. As such an HMM, we previously proposed a
frequency-weighted HMM [3]. This HMM has been proved
to be robust to additive noise over a wide range of SNR due
to the use of both the group-delay spectra and the fixed co-
variances derived from the frequency-weighting coefficients.
While this HMM is not robust to very noisy conditions, it can
be combined with speech enhancement techniques to achieve
high robustness.

Among speech enhancement techniques, the spectral sub-
traction (SS) has been proved to be effective and effi-
cient noise reduction method, especially for filter-bank-based
speech recognizers [4],[5]. However, since the spectral sub-
traction independently processes each spectral component,
the estimated spectra tend to have discontinuity in low SNR

frequency regions. Thus, this distortion may affect the per-
formance of HMM-FW since it utilizes group-delay spectra.

In order to remove this distortion, this paper proposes two
frequency smoothing methods in log-spectral domain; (1) a
low-pass liftering by discrete cosine transform (DCT), and
{2) a weighted minimum mean square error method (WMSE)
which fits cosine series to an estimated log-power spectrum.
These smoothers intend to interpolate low SNR components
from high SNR ones.

These smoothing methods are combined with speech recog-
nizer based on a grand variance HMM [6] as well as HMM-
FW, and are evaluated through word recognition tests using
the NOISEX-92 database down-sampled to 8 kHz. For three
types of noises, the performances of S§ with or without the
proposed smoothers are also compared with nonlinear spec-
tral subtraction [7).

2. FREQUENCY-WEIGHTED HMM

In this study, we use a p-channel filter bank in speech analy-
sis. In the frequency-weighted HMM [3], the pseudo-group-
delay spectrum z¢ is used as an observation vector to utilize
its robustness to noises [8],[9]. z¢ is defined by the inverse
DCT of quefrency-weighted cepstral coefficients:

Pz, (1)

where C represents the (p x p) discrete cosine transform ma-
trix.
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In the frequency-weighted HMM all the covariances are re-
placed to the inverse of a frequency-weighting matrix Zp =
diag[wy, w2, .., wp). The frequency-weighting coefficients wyx
is the smoothed and compressed power spectrum, and are
derived from the grand mean u& of the pseudo-group-delay
spectra as follows:

we = nexp{viix'}, (2)

where jif, is the kth component of the smoothed log power
spectrum given by

it =cTroud 3)



with I = diag[1,1/2,..,1/¢,0,..0], and v is a compression
factor and n a scale factor [10]. Therefore, the covariance
in this model is not estimated statistically, but instead is
derived based on a prior knowledge on the perceptual im-
portance in frequency domain and/or expected variance due
to degradation of speech.

3. SMOOTHING FOR SPECTRAL
SUBTRACTION

3.1 Spectral Subtraction

In a standard spectral subtraction, the clean speech power
spectrum % = [, %2,..,Zp)° is estimated from the noisy
speech power spectrum z = [z,,z2...,z,]7 by

Tk =max{1:k—aN;,,7Nk} s (4)

where Ny is the estimated noise power spectrum in the k-th
channel, and a the overestimation factor, and 71\7} the spec-
tral floor[5]. This spectral subtraction doesn’t take account
of the correlation between neighboring spectral components.
Therefore, the estimated spectra tend to have discontinuity
in low SNR components due to both flooring and variation of
noise. This distortion may affect the performance of HMM-
FW since the spectral discontinuities produce spectral peaks
in pseudo-group-delay spectra.

3.2 Spectral Smoothing

To suppress this distortion caused by spectral subtraction,
the low SNR components of the estimated log-power spec-
trum ' = logZ are requiered to be smoothed while preserv-
ing the high SNR components. We propose a new estimate
of log-power spectrum i' defined by a weighted sum of the
non-smoothed and smoothed log-power spectra, i’ and iz,
as fallows;

i =Wi + (I -W)i', (3)

W = diag[W;, -, W,). (6)
The weighting coefficient Wi is a monotonically increasing
function of the estimated SNR and is bounded between 0 and
1. Therefore, the low SNR components of ' are replaced by
those of the smoothed log-power spectrum z' derived from
z'. In this study, we choose the transfer function of the
estimated Wiener filter as such weighting coefficients:

;Vk = max {ﬂ, Wrmtn}, (7)

Tk

where 3 is the overestimation factor to estimate the Wiener
fter, and W,,,, is a value close to zero. 3 is not always the
same as a in equation (4).

The smoothed log-power spectrum ' is given by DCT of

the (r x 1) liftered cepstral vector Z;, which will be described
later, as fallows:

i‘z = Cri;g (8)

where C; represents the first r columns of the matrix C. The
number of cepstral components for Liftering, r, is determined
depending on the number of reliable spectral components in
z. In this study, r is set to the number of the coefficients W’s
which are greater than a threshold . Thus, the smoothness
is controlled by the smoothing parameters 8 and 3. %} is
estimated based on one of the fallowing two methods.

(1) The DCT method

In this method, the vector Z7 is simply given by the lower 7
components of the following cepstral vector z°:

=-C
T =

7 log . (9)

- N

(2) The weighted MSE method (WMSE)

Whereas in the DCT method every spectral component of
Z equally contributes to z°, this method takes the reliabil-
ity of each spectral component into account using W. The
unknown cepstral vector z; is estimated to minimize

JzH) =G -2HTwE' -2 . (10)
The estimated z; is given by the normal equation,
cTwce,zt = pcTwi. (11)

Therefore, unlike the DCT method, the cepstral vector z{ in
this method is altered depending on the values of 3 and @
even if r is held unchanged.

4. EVALUATION

4.1 Database and Speech Analysis

In speech analysis, a 15-channel uniform filter bank system
with a flat composite spectrum was implemented at a sam-
pling rate of 8kHz using the same design procedure as de-
scribed by Dautrich, Rabiner, and Martine [11]. The spacing
of channel center frequencies and the band width of each
bandpass filter were set to 250Hz (8kHz/32) and 300Hz,
respectively. First, the speech signal from the NOISEX-
92 database was down-sampled to 8kHz and preemphasized
with (1 — 0.9827"). The output of each bandpass filter was
followed by a square law detector and a moving average fil-
ter of 12 points. The channel outputs were sampled at every
10ms.

Three stationary back ground noises were used: car, white,
and Lynx helicopter noises. The degraded speech by car and
Lynx noises were used from the NOISEX-92 database. On
the other hand, the white noise was generated in a computer,
and was added to clean speech so that the global SNR for



each word is equal to a predetermined value.

Each of the HMM models was trained using 10 repetitions of
noise-free samples. Another set of ten utterances was used
for testing. The Vitarbi algorithm was used for testing. The
beginning and end points were fixed to those in the label
files. Thus, only substitution errors were scored.

4.2 Baseline System

In the evaluations, the recognition system uses a grand vari-
ance HMM (HMM-GT) [6] as well as the frequency-weighted
HMM for comparative experiments. In HMM-GT all the co-
variances for every word model are fixed to the ’grand diag-
onal covariance’ ©% over all the training speech. HMM-GT
for each word was also used as the initial model for HMM-
FW. The structure of both HMM-FW and HMM-GT is a
left-to-right model of 26 states with a single Gaussian com-
ponent.

Before recognition experiments, the parameters involved in
the base-line system were optimized. As to the frequency-
weighted HMM, the normalized scale 7, which is defined by
{iIW/1Z%]}*/*, was set to 100 for all the noise conditions,
and the compression factor v in equation (2) is set to 1.0 for
white noise and to 0.0 for car and Lynx noises {10].

As to spectral subtraction, on the basis of the preliminary
experiments, the overestimation factor o and the flooring
parameter vy in equation (4) were set to 2 and 0.001, re-
spectively, over all the noise conditions. The noise estimate
Nk was obtained by averaging noise spectra over 30 frames
preceding each word. In addition to the standard spectral
subtraction, the nonlinear spectral subtraction (NSS) was
implemented to compare with the smoothed spectral sub-
traction proposed here.

4.3 Effect of Smoothing

First, the effects of the smoothing parameters 4 and 6§ were
examined using Wp.n. Figure 1 shows the recognition per-
formance of the HMM-FW based system with three values
of 3 as a function of the smoothing parameter 8§ at two SNRs
for each type of noises. In these plots, the value of # = 0 im-
plies no smoothing, and thus corresponds to the conventional
SS. From this figure, the following general trends emerge. In
both methods, the maximum recognition score for each 3
tends to increase with larger value of 3 for the noises whose
spectra have steeper falling slope, such as for car noise. As
to ¢, the larger the value of 3, the smaller the optimum
value of # to give the highest score. In the DCT method,
the optimum values of ¢ are mostly smaller than those in
the WMSE method, and thus the smoother is less effective
in severe SNR conditions, especially for white noise. In the
HMM-GT based system, the above trends were also found.
Table 1 summarizes the globally optimal values of 3 and & for
each type of noises and for both smoothing methods, though
their optimal values are not always consistent across SNRs
and the types of HMMs.
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Figure 1: Effects of the smoothing parameters 8 and 5 in
both DCT and WMSE smoothers on the performance of
the HMM-FW based recognizer at two SNR conditions
of white, Lynx, and car noises.



Table 1: The globally optimal values of the smoothing
parameters for the two smoothers and for three types of
noises.

Smoother DCT WMSE

Parameter 3 [’] ] []
White 0.5 01105 06
Lynx 0.8 0.1(08 04
Car 10 01]08 04

Finally, using these smoothing parameters, Table 2 com-
pares the recognition scores obtained by each of HMM-based
recognizers using the conventional spectral subtraction (SS)
with/without the smoothers (DCT/WMSE) or the nonlin-
ear spectral subtraction (NSS) in three noise conditions.
First, in the HMM-FW based system, SS with the WMSE
smoother achieves the highest overall performance in severe
noise conditions. For instance, this smoother increases the
recognition rate from 68% to 88% at -6dB SNR of added car
noise. Furthermore, SS with the DCT smoother is also su-
perior to NSS under car noise environment. Second, in the
HMM-GT based system, the WMSE smoother obtains sig-
nificant improvement on the recognition scores, but the per-
formance is comparable to that of NSS. On the other hand,
the DCT smoother slightly improves the recognition accu-
racy over SS, but is inferior in performance to NSS except
for car noise.

4. CONCLUSION

This paper has presented two spectral smoothing meth-
ods to improve the performance of the spectral subtraction
for noisy speech recognition. Through ten-digit recognition
tests, it has been shown that when using the frequency-
weighted HMM the smoother based on the weighted mini-
mum mean square error method achieves the highest overall
performance under severe noise conditions. In future work,
it is necessary to evaluate the performance using large vo-
cabulary recognition tests and to develop an adaptive control
method to optimize the smoothing parameters depending on
noise spectra.
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