BUILDING 10,000 SPOKEN DIALOGUE SYSTEMS

Stephen Sutton, David G. Novick, Ronald Cole, Pieter Vermeulen,
Jacques de Villiers, Johan Schalkwyk and Mark Fanty

Center for Spoken Language Understanding, Oregon Graduate Institute
P.O. Box 91000, Portland, OR 97291, USA

ABSTRACT

Spoken dialogue systems are not yet ubiquitous. But with an easy-
enough development tool, at a low-enough cost, and on portable-
enough software, advances in spoken-dialogue technology could
soon enable the rapid development of 10,000 or more spoken
dialogue systems for a wide variety of applications. To achieve this
goal, we propose a toolkit approach for research and development
of spoken dialogue systems. This paper presents the CSLU toolkit,
which integrates spoken-dialogue technology with an easy-to-use
interface. The toolkit supports rapid prototyping, iterative design,
empirical evaluation, training of specialized speech recognizers and
tools for conducting research to improve the underlying technology.
We describe the toolkit with an emphasis on graphical creation of
spoken dialogue systems; the transition of the toolkit into the user
community; and research directed toward improvements in the
toolkit.

1. INTRODUCTION

In the past decade, research in spoken language technology has
enjoyed strong support in the United States. However, spoken
language systems are not yet ubiquitous, and there are many
problems that need to be solved before they can become so. These
problems include high expertise requirements, a lengthy and
expensive development process, and the lack of portability of
spoken language technology. To reach a future with ubiquitous
spoken dialogue systems, then, the field needs to make it possible
for non-expert developers to build portable spoken-language
applications and interfaces rapidly. This approach should enable
developers, authors and even end-users to create and adapt speech
technology to the tens of thousands of specialized domains in which
they have their own expertise.

To achieve this vision, we propose to address the barriers to
ubiquity through a toolkit approach. This paper presents the CSLU
toolkit, which supports rapid-prototyping, iterative design,
empirical evaluation of spoken language systems, training of
specialized speech recognizers, research into spoken language
technology, and provides a modular and flexible environment
which allows the sharing of resources (e.g. telephony cards) over a
computer network.

2. BARRIERS TO UBIQUITY

While many aspects of spoken-language technology—such as
Tecognition accuracy, oui-of-vocabulary rejection and mixed-
initiative dialogue—continue to pose serious difficulties, a number
of spoken-language systems are already in successful use. These
systems are characterized by limited vocabularies, simple
grammars, and well-defined tasks. But the number of such systems
remains small relative to their promise; we attribute this to three
principal barriers:

Lack of expertise. Development and research of spoken language
systems currently requires technical expertise across several subject
areas. Because of these requirements, development and research is
currently limited to a few specialized laboratories.

High development costs. The development process is lengthy and
expensive, often requiring months or even years to produce a
spoken language application. Data collection for training
recognizers and for building language and dialogue models is costly
and often must be done via “Wizard-of-Oz” simulation, with
humans attempting to mimic the performance of a spoken language
system.

Lack of portability. Current spoken language systems technology
is not very portable [1, 4]. That is, the technology cannot support
adequately the development of new applications with acceptable
performance without significant engineering for each new task.

The combination of these problems severely hinders application
development and limits the role that spoken-dialogue technology
can play in key areas such as research and education.

3. THE CSLU TOOLKIT

The CSLU toolkit is made up from number of layers, as shown in
Figure 1 [6]. At the highest layer, a direct manipulation interface
(CSLUrp) enables authors to design graphically a spoken language
system. This graphical specification is translated into Tcl Scripts
which are then executed inside a programming shell (CSLUsh).
This shell is made up from a collection of core libraries, written
mostly in C. The libraries can also be used without the shell for
developing stand-alone C applications and third-party applications.

The CSLU toolkit supports the complete life-cycle of a spoken-
language system. It enables research by providing the essential tools
and infrastructure for advancing speech technology, as well as other

CSLUrp|
Dialogue
Authoring
Environment

Tcl Scripts

Qoe00d000s

* Figure 1a: CSLUrp Example

CSLUsh

Programming Environment

Core Tcl/C Libraries

Phoneme %

Frame Signal s .1.. | Feature | E
Selection | Processing l;,:;b:‘l::::z h | Utility Selection ,.

Figure 1: Overview of CSLU toolkit

aspects of human-computer interaction such as dialogue design. It
allows quick and easy development of spoken-language system
prototypes. It supports applications development through activities
such as collecting speech data, training of recognizers, and includes
integrated tools for browsing and labeling speech. Finally it serves
as a valuable educational tool offering the opportunity for “hands-
on” learning.

We now describe the main components of the toolkit—CSLUsh and
CSLUrp—in more detail.

3.1. The CSLU Shell

The base component of the toolkit is the CSLU Shell (CSLUsh, pro-
nounced “slush”), which is based on the extensible scripting
language Tcl. We have added a number of modular, integrated and
dynamically loadable packages which add new commands to the
language, designed to support research and development of spoken
language systems. Basic functions include manipulating wave files,
performing signal analysis (e.g. FFT, mel cepstrum), extracting fea-
tures, training and utilizing antificial neural networks, and doing
speech recognition for isolated words and continuous speech with
finite-state grammars. It includes a general-purpose (vocabulary-
independent) recognizer and a number of special-purpose recogniz-
ers for common vocabularies such as digits and alphabets.

Fundamental to CSLUsh is the use of objects, which are essentially
C structures hidden to the CSLUsh developer. Access to the objects
is provided by the new Tcl commands. Communication between

modaules is performed by passing object handles. This works across
the network as well as across platforms. For example, it is quite easy
in CSLUsh to send an object to a CSLUsh server running on another
machine, perform some computation and receive a result object
back. CSLUsh automatically takes care of repacking the underlying
structure to take care of platform dependencies such as byte order.

To give the flavor of CSLUsh programming, here is the transcript
of an interactive session in which the user reads a speech file, scales
it so that the max sample is 15,000 and write it back to disk. The
identifiers “wave:0” and “wave:1” are object handles [6].

% wave read NU-2234.zipcode.wav

wave:0

% wave info -max wave:0

{4158 5168 646.0}

% wave scale wave:0 [expr 15000.0/4158.0]
wave:l

% wave info -max wave:l

{14999 5168 646.0}

% wave write wave:l new.wav

wave:l

In addition to technology created at CSLU, CSLUsh incorporates
implementations of many common and widely-used algorithms
essential for creating spoken language systems.

3.2. The CSLU Rapid Prototyper

CSLUsh is a good development and research environment, but
building a telephone dialogue using CSLUsh still takes several steps
that may be intimidating for non-experts. The CSLU Rapid
Prototyper (CSLUrp, pronounced “slurp”) is a graphically-based
authoring environment built on top of CSLUsh and incorporates all
the steps necessary for building and executing simple spoken-
dialogue systems. The main strengths of CSLUrp include: (a) the
speed with which application prototypes can be created; (b) an easy-
to-use interface; (c) strong support for authors who lack specialized
technical expertise in speech recognition; (d) the ability to create a
wide range of real-world applications; and (e) suitability for a broad
community of users.

CSLUrp includes a graphical palette of dialogue objects and a
simple drag-and-drop interface. The dialogue objects serve as
visual-programming building blocks. During the design phase, the
author selects and arranges appropriate objects, linking them
together to create a finite-state dialogue model. Then, during the run
phase, CSLUrp provides a real-time animated view of the dialogue.
The author can alternate between the design and run phases,
enabling the incremental development and iterative refinement of
spoken language systems. The set of objects in the palette covers a
range of fundamental spoken language system functions including
answering the telephone, speaking a prompt, recording speech
input, recognizing speech input, and identifying DTMF tones.

The interface is designed to require minimal technical expertise on
the author’s part and to simplify the design and specification
process. For example, specifying a speech recognizer is largely
automnated; all that is required of the author is to enter the
recognition vocabulary by typing or saying—for speaker-dependent

Figure 2: Prototype system being developed using CSLUrp.

recognition applications—words or phrases. The system prompt
which is produced immediately prior to performing recognition can
be either recorded, or entered as text and spoken by a speech
synthesizer. Also, in the case of the latter, the text can optionally be
generated automatically according to a set of pre-specified prompt
styles [3]. Figure 2 shows a prototype spoken-dialogue system
being developed using CSLUrp.

CSLUrp is fully integrated into the local environment. For instance,
after designing a prototype the author simply clicks the “build”
button followed by the “run” button, after which the system is ready
1o be called at the phone number displayed. Additionally, the author
has the option of selecting from the set of available phone numbers
which are provided by CSLUrp after it queries the telephone server.

CSLUrp inherits the power and flexibility of CSLUsh through its
foreign code feature. This enables authors to design prototypes that
access the CSLUsh level and execute arbitrary CSLUsh code from
within CSLUrp at run time. Thus, as authors become more

experienced and familiar with CSLUsh’s capabilities, they can
move beyond the scope of CSLUrp’s initial set of functions and take
advantage of the CSLUsh level to develop a wide range of
interesting applications such as speech interfaces for existing text-
based applications, speech front-ends to replace existing DTMF
(touch-tone) interfaces, voice-response questionnaires and
applications for spoken access to the world-wide web.

In summary, the CSLU toolkit is designed to address many of the
problems associated with the lack of portability of spoken language
system technology discussed above: the need for multidisciplinary
expertise, substantial infrastructure requirements, and the effort
required to develop systems for each new task. These problems are
addressed (a) by providing a toolkit that incorporates most of the
infrastructure needed to design, develop and investigate spoken
language systems (most research at CSLU is now performed within
the toolkit); (b) by making all of CSLU'’s speech corpora available
to university researchers free of charge and providing tools to train
new networks; and (c) by packaging other public-domain language
resources within the toolkit.

3.3. Platform Portability

To insure portability and ease technology transition, the CSLU
toolkit includes complete specifications for putting together tum-
key systems. It also specifies the hardware and software
Tequirements to make porting to new platforms as easy as possible.
Our principal target platform is an Intel x86 (Pentium or better)
processor running Solaris, a Dialogic telephone board, and
DECtalk! text-to-speech software (which we have ported to x86
Solaris in cooperation with DEC, and which can be commercially
licensed). The toolkit provides a generic interface for text-to-speech
engines, including a common set of embedded commands, such as
for changing pitch. The toolkit also provides a generic interface for
speech I/O and a guide for writing servers for new devices. It
supports the microphone-speaker of a Soundblaster in a PC running
Solaris x86 and the standard microphone-speaker on a Sun
Sparcstation, Dialogic and Linkon telephony boards are supported,
and device drivers exist for several platforms. These devices can be
shared between platforms in a client-server fashion. Multi-platform
porting is facilitated by the toolkit’s C/Tcl/Tk implementation.

4. TECHNOLOGY TRANSITION

One of the major objectives of the CSLU toolkit is to make spoken-
dialogue technology less exclusive and more accessible by
promoting technology transition. To encourage sharing of
applications and technological enhancements, the toolkit is
designed to make it easy to add new software, to be as platform
independent as possible, to include no proprietary software and to
incorporate or be compatible with the most useful and widely-used
software development tools.

Our goal is to create a toolkit that will be embraced by a generation
of students, developers and researchers simply because it is useful.
We anticipate that such a toolkit approach will create and benefit

1.DECtalk is a trademark of Digital Equipment Corporation.

from a multiplier effect. By providing the capability to build spoken
language systems, speech interfaces will be introduced in a growing
number of applications, the limitations of the technology will
become apparent, and more effort will be expended to improve the
technology to enable better applications. Better applications will
yield more value, more use and more interest in improving the
technology, and the multiplier effect will move the development of
spoken language interfaces out of the laboratory and into the public
sector. The CSLU woolkit is designed to support the many activities
needed to make this happen—system design and deployment,
research and training.

We are providing the CSLU toolkit to the academic community free
of charge. We are also aiding the process of sharing software and
ideas by developing and maintaining a World-Wide Web site where
developers, researchers and users can contribute and obtain useful
software, such as recognizers, subdialogues and working systems.
We plan to incorporate the most useful of these into new releases of
the toolkit. We have also set up a mailing list for reporting problems
and requesting help.

Finally, we are supporting technology development and transition
by offering short courses in which we teach people to use the toolkit
for designing and developing spoken language systems. An earlier
version of the toolkit has already formed the basis of a short course
described in [2). We are working with other universities to transfer
the toolkit to their sites and use it to develop laboratory courses in
spoken language technology, to be incorporated into their
undergraduate curricula.

5. FUTURE WORK

We are committed to continuing to develop the scope of the toolkit
and its underlying technology. In addition to incorporating more
advanced speech recognition capabilities, such as interpreting
spontaneous speech using robust parsing techniques, we are
investigating fundamental advances in dialogue technology. For
instance, we would like to support more fluid and usable human-
computer dialogues by moving beyond structured dialogues with
simple finite-state grammars and fixed vocabularies. Research is
needed to develop a more general basis for building flexible spoken
language systems using high-level representations of knowledge,
such as the goals and expectations of the user and the system.
Improved dialogue representations should capture the dynamics of
mixed-initiative interaction and provide authors with dialogue
control structures suitable for tracking the dialogue focus,
monitoring the mutuality and coherence of contributions, and
providing a basis for performing automatic repair.

Specifying a spoken-dialogue system from scratch requires a great
deal of expertise both about the domain and about the nature of
human-computer interaction. This burden can be lessened through
the reuse of knowledge. While it may be difficult to generalize
interactions across domains, capturing pockets of knowledge for
specific domains and tasks is a real possibility. Certain tasks and
subtasks may recur in different applications, such as getting
someone’s name and address, obtaining an order, retrieving
messages, and scheduling meetings. Research is needed to discover
suitable knowledge for reuse and to explore the building of libraries

of dialogues, subdialogues, metadialogues, and referent objects.
CSLUrp’s subdialogue objects are designed to support this effort,
representing entire task-oriented subdialogues as a single icon.

6. CONCLUSION

As demand increases for ubiquitous spoken-dialogue applications,
there is a critical need to make spoken-dialogue technology less
exclusive, more affordable and more accessible. An important step
towards satisfying this need is to be able to place development of
spoken-dialogue systems in the hands of the real domain experts
rather than limit it to technical specialists. The technology will have
succeeded when a large number of spoken-dialogue systems are
developed and used. To reach this goal, we need technology that
will make it possible to build 10,000 spoken-dialogue systems. To
address this need, we have developed and are distributing the CSLU
toolkit.

7. ACKNOWLEDGEMENTS

This research was supported by U S WEST, the National Science
Foundation, the Defense Advanced Research Projects Agency, the
Office of Naval Research, and the member companies of the Center
for Spoken Language Understanding. We thank Azdine Tadrist for
his help in creating CSLUrp.

8. REFERENCES

1. Cole, R. A, Hirschman, L., et al. “The challenge of spoken
language systems: Research directions for the nineties,”
IEEE Transactions on Speech and Audio Processing, 3(1),
1-21, 1995.

2. Colton, D, Cole, R., Novick, D., and Sutton, S. “A
laboratory course for designing and testing spoken dialogue
systems,” Proceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP 96),
Atlanta, GA, 1129-1132, 1996.

3. Hansen, B., Novick, D., and Sutton, S. “Systematic design
of spoken prompts,” Conference on Human Factors in
Computing Systems (CHI 96), Vancouver, BC, 157-164,
1996.

4. Hirschman, L., et al. Summary report from the workshop on
toolkits for language interface portability: The toolip
workshop, Technical Report MP-95B0000173, MITRE,
Bedford, MA, 1995.

5. Schalkwyk, J., Colton, D., Fanty, M. The CSLU toolkit for
automatic speech recognition, Technical Report No.
CSLU-011-96, Center for Spoken Language
Understanding, Oregon Graduate Instinite of Science &
Technology, 1996.

6. Sutton, S., Vermeulen, P., de Villiers, J., Schalkwyk, J.,
Fanty, M., Novick, D. and Cole, R. Technical specification
of the CSLU toolkit, Technical Report No. CSLU-013-96,
Center for Spoken Language Understanding, Oregon
Graduate Institute of Science & Technology, 1996.

