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ABSTRACT

Neural networks are accepted as powerful leaming tools in
pattern recognition in which they proved their performance.
Nevertheless, many problems like phoneme classification with
multi-speaker continuous speech database are hard even for
Neural Networks. Our aim is to propose an Artificial Neural
Network architecture that detects acoustic featurcs in speech
signals and classifies them correctly. We reached this goal with
English stop consonants [b, d, g, p, t, k] extracted from the
general multi-speaker database (TIMIT) by modifying some
parameter values in the preprocessing algorithm and by using a
modified TDNN ( Time Delay Neural Network) architecture.

Our net performed a good classification giving as testing
recognition percentage the following results: 92.9 for [b], 91.8
for [d}, 92.4 for [g], 80.3 for [p], 90.2 for [t], 94.2 for [Kk].

1. INTRODUCTION

Phoneme recognition is a hard task because these small speech
units are very variable and it is difficult to find features that
remain stable and allow to discriminate among them in their
corresponding acoustic signal. Neural Networks for phoneme
recognition firstly were used by Waibel et al. in 1987. The results
published were enough good but they were obtained using an
elaborated network architecture and a small number of speakers
and therefore a specific database. When researchers try to realize
stop consonant recognition with general database (like TIMIT),
the network performance decreases significantly [3]. With the
present work, we faced the phoneme recognition problem again
with new approaches. We uscd as database TIMIT and as
preprocessing algorithm RASTA-PLP [1].

The paper 1s organized as follows. In the first section, we describe
the data and the preprocessing performed on them. The second
section describes some acoustic features of the phonemes we
want to classify, whereas the third section describes the network
architecture and the learning algorithm. Finally we present the
experimental results in the fourth section.

2. SPEECH MATERIALS AND
PREPROCESSING PROCEDURE

The continuous speech database used is extracted from the TIMIT
database made up of English sentence-texts produced by
speakers from different US regions.

Each speaker had read ten different English sentence-texts. Our
data (the stop consonants {b, d, g, p, t, k]) are extracted from
such sentences. The training data are produced by 38 speakers
(24 males and 14 females) from the same US region (drl in
TIMIT) whercas the testing data are obtained from 35 speakers
(22 males and 13 females) coming from three different US
regions (drl-dr2-dr3 in TIMIT). Table 1 summarizes, the number
of phonemes used to train and test the net.

Phoncemes Training Testing
[b] 183 176
[d} 300 265
{g] 166 157
ip] 211 188
[t] 329 326
{k] 389 352
Total 1578 1464

Table 1: Size of the training and testing data

The speech signal is preprocessed using the Rasta-PLP algorithm
due to its performance over Linear Prediction and Perceptual
Linear Prediction algorithms [1, 2]. Moreover, we modified some
parameter values of the RASTA-PLP algorithm in order to
capture the acoustic features of the stop phonemes. Indeed, the
speech signal was sampled at 16 kHz; at each step of 5 msec rate,
the speech segment is weighted by a Hamming window of 10
msec. In the onginal algorithm, the speech signal was sampled at
20 kHz and the Hamming window 20 msec long is moved over
the speech signal every 10 msec.

The resulting waveform file is processed to produce nine acoustic
features for each one of the stop consonants [b, d, g, p, t, k]. This
vector of features has been used as input of the network.
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3. ACOUSTIC FEATURES OF STOP
PHONEMES

English stop consonants [b, d, g, p, t, k] are divided into two
classes: the voiced [b, d, g] and the voiceless [p, t, k]. Stop
consonants are always preceded by a closure interval prior to the
release and they are released with an explosive burst when
produced before a vowel in a monosyllable. The silent interval is
an essential cue for the identification of stop consonant [3].

There is little vowel transition following [p], [t], or [k] because
most of the articulatory movements of the vocal apparatus to the
vowel configuration occur during the VOT period [5]. Defined as
the interval between the onset of the stop burst and onset of the
vowel voicing, the Voice Onset Time (VOT) reliably
discriminates between the voiced and voiceless stops [11] in
initial position of isolated words and in short sentences.

Hovewer, in other phonetic environments, VOT values were
found to be compressed for both voiced and voiceless stops, and
the separation is less sharp [12]. The Rasta-PLP algorithm is
capable of extracting from the raw speech signal such acoustic
features and they can be appropriately used by our Necural
Network in order to perform a good classification of [b, d, g, p,
t, k].

Cole and Scott showed that the identification of a particular stop
in each class involves identification of either invariant or
transitional cues (Invariant cues are defined as acoustic cues
which accompany a particular phoneme in any vowel
environment. Transitional cues are defined as acoustic cues which
accompany a particular phoneme in a specific environment)
depending upon the position of the consonant in the syllable and
the position of the syllable in the utterance. Moreover they
showed that stop consonants occurring in word initial position if
substituted with another consonant were misperceived except for
[g] which could be replaced by [b] whenever it occurs. When a
stop consonant occurs in any other position, all voiced stops could
be replaced by [d] while all unvoiced are replaced by [t] without
loosing the meaning of the sentences. The results of this
experiments suggested that some speech segments could be
changed by production error or by phonological rules without
changing the listener’s perception. Moreover, they showed that
the perception of [b, d] is much stable than the perception og [g],
and the perception of [t, k] is much stable than the perception of
[p]. Since neural networks can only extract features from their
inputs in order to realize the recognition process, the phonemes
that more often undergo changes likes that mentioned above are
not classified so well as the others. These observations can
explain the different performance obtained on the phonemes we
try to recognize. Indeed, our experimental results, reported
through the tables which follow, showed that net recognition
percentage for [p, g] are always lower than for the other
consonants.

4. DESCRIPTION OF THE NETWORK
ARCHITECTURE AND LEARNING
ALGORITHM

To perform the task mentioned above, we used Time-Delay
Neural Networks which have turned out to be very suitable for
phoneme recognition because , as Waibel showed the features
learnt by such networks are invariant under translation in time {8,
10]. However our net architecture is more simplified compared to
the one proposed by Waibel et al. In fact, our input layer is a
vector of nine components whereas Waibel used a matrix with
16 X15 components. Our net architecture that performs best is 9-
256-6-6, i.e. the input layer has 9 units, the first hidden layer
contains 256 nodes, the second hidden layer has 6 units and the
output layer contains 6 neurons. The delays are short in order to
capture the variable acoustic features of English stops. Each of
the six output units corresponds to [b], [d], [g], [p), {t], [k]. Our
net operates in the same way as the TDNN descibed by Waibel
[8, 9,10}

The network is trained with normalized input data using an on-
line back-propagation algorithm (which is more appropriate for
speech recognition [3]) without using the momentum for the
updating phase. .Indeed, this factor does not seem really efficient
when used with an on-line learning algorithm [3, 4]. The
learning rate is low (0.03)_in order to avoid as much as possible
the local minima problem. The backpropagation learning
algorithm is a gradient descent of the mean squared error as a
function of the weights i.e.
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defmed the error function for pattern paf. Expressions tarpa,_ ;

and ot pat.j define respectively the target and the output for the

pattern par on node j [7]. The choice of sigmoid function as
activation function is motivated by its mathematical properties (6]
and its use means that enough information about the output is
available to units in earlier layers [7).

5. RECOGNITION EXPERIMENTS

The first experiment is done in order to explain our modification
in the RASTA processing algorithm. We run the net with an
architecture of 9-24-6-6 and summarized the performance rate
depending upon the number of epochs and algorithms used (see
Table 2 and Table 3).



Phonemes | epochs | cpochs | epochs | cpochs

200 1000 1800 2600

[b} 67.1 73.2 69.1 65.0

[b] 59.0 36.3 63.1 70.0

[g} 32.0 313 33.0 35.0

[p] 34.1 45.1 47.4 53.1

[t] 80.0 84.2 84.2 81.5

k] 62.2 67.1 67.0 66.3
Total 46.0 59.5 60.6 61.6

Table 2: Performance rate with the original RASTA-PLP
algorithm during the training phase.

Phonemes | epochs epochs | epochs epochs

200 1000 1800 2600

[b] 74.3 73.2 69.4 73.4

[b] 76.0 81.3 79.1 76.0

[g] 54.0 45.2 49.1 58.2

[p}] 51.0 63.0 65.0 64.2

[t] 86.3 89.4 88.2 88.5

[k} 79.4 77.4 84.1 82.0
Total 70.2 72.2 72.3 73.7

Table 3: Performance rate with the modified RASTA-PLP
algorithm during the training phase.

It appears that the average recognition performances of the net
with the modified algorithm were better than those obtained with
the original algorithm. This result confirms that net performances
depend upon how the data arc preprocessed [3]. Therefore, all the
subsequent training and testing experiments were done using data
preprocessed with our modified RASTA-PLP algorithm.

6. OPTIMAL NUMBER OF NEURONS FOR
IMPROVED PERFORMANCE

It is largely accepted that newral performances improve when
increasing the number of neurons {3]. Our goal in doing this
experiment is to propose an optimal net architecture for obtaining
the best performance. Our TDNN net architecture only offers the
possibility to increase the number of hidden neurons in the first
layer. For practical and computational reasons, we think it is not
possible to increase such a number indefinitely, there must exist
a limit. As it is possible to sce in Table 4, the performance
increases according to the number of hidden neurons in the first
layer with the existence of a maximum.

Number of 24 32 64 128 | 256 | 350
nodes in the
first layer

Performance | 72.1 | 72.8 | 815 | 850 | 88.1 { 85.6

()

Table 4: Average net performance rate during the training phase
as a function of the number of hidden neurons. Such

performances are obtained with data preprocessed with the
modified RASTA-PLP algorithm .

From these results, the net architecture 9-256-6-6 is an optimal
choice. Both the training and testing results on such net
architecture are given in Table 5. The net has been trained over
1600 epochs. A greater number of epochs did not improve the net
performances. As the number of epochs grows overfitting may
occur and, as consequence, the net performances on testing set
gets worst.

Phonemes Performance %
Training Testing |
[b] 93.7 92.9
[d] 92.3 91.8
[g] 77.5 92.4
[p] 78.4 80.3
[t] 924 90.8
[k] 94 .4 94.2
Total - 88.1 90.4

Table 5: Net performance rate during the training and testing
phases for a 9-256-6-6 TDNN architecture.

7. CONCLUDING REMARKS

We showed that a net architecture 9-256-6-6 is an optimal choice
to improve the English stop consonants classification using Time
Dclay Neural Network. Mareover, we proved that the Hamming
window of 10 msec moved at every S msec rate and a sampling
rate of 16 kHz are more appropriate when the speech signal is
preprocessed using the RASTA-PLP algorithm.
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