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ABSTRACT

Simple IIR or FIR filters have been widely used in isolated or
connected word recognition tasks to filter the time sequence of
speech spectral parameters, since, despite their simplicity, they
significantly improve recognition performance. Those filters,
when applied to continuous speech recognition, where phoneme-
sized modelling units are used, induce spectral transition
spreading and a cross-boundary effect. In this work, we show how
the use of context-dependent units reduces the side effects of the
filters and may result in improved recognition performance. When
dynamic parameters are not used, filtering seems to be especially
useful, even for clean speech, and when they are, filters do well
under unmatched training and testing conditions.

1. INTRODUCTION

At present, IIR or FIR filtering of the time trajectories of speech
spectral parameters is widely used since, albeit conceptually
simple and amenable to a real time implementation, it allows a
significant improvement in recognition performance.

In a logarithmic spectral domain, where a convolutive distortion
becomes additive, filtering out the very low frequencies of the
time trajectories helps to alleviate the linear distortion due to the
slow-varying acoustic channel. However, most filters used tend to
be bandpass, rather than highpass. Therefore, they can do
something else than merely cancelling the DC component.

The study of the average long-term power spectrum 1] of the time
sequences of spectral parameters, denoted by 7(6), where 6, often
referred to as modulation frequency, is the frequency counterpart
of the frame index n, shows that such filters, like those which are
used to provide dynamic features or supplementary parameters,
actually have two components: a differentiation, often
implemented with a zero at or close to z=I, which attenuates the
low frequency region and approximately equalizes the rest of the
long-term spectrum, and a lowpass component, which discards the
high frequency zone of the long-term spectrum, where the
estimation error variance is greatest and which has been unduly
enhanced by the first component [1].

With one feature, substitutive parameter filtering has also been
shown to yield a substantial improvement for clean speech,
although in this case the linear distortion due to the acoustic
channel is fixed, through an enhancement of the time dynamics of
the time trajectories of speech feature vectors and through a
reduction of speaker variability [2].

However, those filters have most often been applied to isolated or
connected word recognition tasks [2, 3], where the average word
length is far higher than the effective length of the impulse
response of the filters, since the latter induce a spreading of
spectral transitions and make the current analysis output depend
on its neighbouring context.

Such side effects are critical in continuous subword-unit-based
speech recognizers, for which filters may worsen recognition
performance [4]. Context-dependent subword units are frequently
used in this framework since they can model speech
coarticulation. In this work, we show how, as suggested by [5], the
use of context-dependent units tackles the problem posed by the
cross-boundary effect brought about by the filtering and may make
the latter advantageous.

We apply several filters to the parameterised utterances of two
continuous speech databases and for different sets of contexi-
dependent units and number of features (one or two, that is to say,
with or without addition of dynamic features or supplementary
parameters). By doing so, in a number of cases, we get a twofold
improvement in recognition performance: the one provided by the
use of context-dependent units and the additional improvement
supplied by filtering. This filtering is extraordinarily simple, and
often helps to further reduce the recognition error rate
significantly.

2. RESULTS WITH ONE FEATURE

Two different databases were used for phonetic classification
experiments: the Spanish EUROM.1 database [6], hereafter
referred to as DB1, and the Spanish SentencesUPV database
(which was recorded by the Universitat Politécnica de Valéncia),
we will call it DB2. Both are used for speaker-independent tests.
The former comprises nearly 37000 PLU’s (in 842 utterances, of
which 186 are different) from 43 speakers for training, and around
12500 PLU’s (in 225 utterances, 61 of them different) from 17
speakers for testing. The latter has 21667 PLU’s (in 839
utterances, 120 being unique) from 7 speakers for training and
5610 PLU’s (150 utterances, 50 different) from 3 speakers for
testing. Both databases are parameterised with 12 Mel-frequency
cepstral coefficients (MFCC) plus an energy coefficient. 25-ms
analysis windows with a 10-ms analysis step were used. Each of
the PLUs, as well as the silence model, is modelled by a three-
state left-to-right continuous observation density HMM. The
recognizer was the HMM toolkit (HTK), with three Gaussian
mixtures per state. The context-dependent labelling scheme is the
same as in {7]. As the number of context-dependent phones (CDP)



is too high, both in theory and in this particular database [7), and
no statistically reliable model can be obtained for most of them, a
threshold for the CDP s is defined, which sets the minimal number
of training tokens for the corresponding CDP model to be trained.
If a CDP is not frequent enough (i.e. if the number of times it
appears in the training corpus text does not attain or surpass the
threshold), then it is the corresponding CI (context-independent)
model which is trained. The coverage rate for a set of context-
dependent units is defined as the fraction of the (training or
testing) corpus text that can be labelled using this set. In this work,
we have only used right context dependent phones (RCP),
triphones (TrP) or a combination of both. The training corpus
coverage rate and the number of units for each of these sets is
shown in Table L

Set and threshold(s) | Number of models Coverase rate
RCP 105 109 79.4%
RCP 70 139 86.3%
RCP 35 194 94.2%
TP 70 126 43.7%
TrP 35 250 59.6%
TP 70, RCP 70 225 (100T, 99 R) 43.7%, 84.7%
TrP 35, RCP 35 391 (224T, 141R) 59.6%, 92.9%

Table 1: Analysis of the different sets of CD units. All the sets
include the 26 CI phones to attain a 100% coverage rate.

The filters we have used are (lowpass) Slepian filters [1] preceded
by a (highpass) equalizing filter with transfer function H(z)=1-rz”,
where r is close to 1. Slepian filters have two parameters, the
length L and the bandwidth W, which if certain conditions hold,
gives the upper cutoff frequency (bandwidth) of the filter. A
Slepian filter of length L and bandwidth W is denoted as (L, W).
We have also used the classical first-order derivative window,
which amounts to a FIR filter of order 5, and refer to it as
regression. Simple IIR filters, the so-called RASTA filters, with a
single complex pole and a numerator identical to the regression
filter, have also been tested. In this section, any of the three
aforementioned filters substitutes for the original feature, with no
addition of supplementary parameters.

2.1. Results with DB1 (clean speech)

Figure 1 shows the recognition results for DB! and one feature.
We see that filtering somewhat worsens the recognition results for
CI phones. The further we move to the right, the higher the
improvement of the error rate (informally defined as 100%-
%accuracy) with respect to the non-filtered case. For CI phones,
this improvement equals -0.97% (the best filter being the Slepian
(5. 32)), whereas for the last experiment it is 11.4% (the
regression filter is the best). Using CD phones allows us to have
an 18.4% improvement in error rate (for the non-filtered case, and
from the first to the last experiment) and filtering enables us to
further reduce the error rate (by another 11.4%), although clean
speech (acquired with a single microphone with little background

noise) has been used. As was expected for continuous speech [1],
filters of length greater than 5 were found to give worse results.
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Figure 1: Recognition results (%accuracy) for DB1 and one
feature.

2.2. Results with Unmatched Training and
Testing Conditions

Figure 2 shows recognition results when the whole of the DB1
database is used for training and the whole of DB2 is used for
testing. Those two databases were recorded with a different
microphone and have some differences in dialect, speaking rate,
etc.. In such conditions, CD units do not improve so much with
respect to the CI case (7% for the non-filtered case), since other
limiting factors than coarticulation, such as the different
microphones, hold. Filtering, however, rounds off the work done
by CD units by providing a further 36% improvement, which
equals 24% only if no CD units are used.
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Figure 2: Recognition results (%accuracy) for the mismatched
case (DB used for training, and DB2 for testing).

2.3. Conclusion

Context-dependent units manage to take into account the natural
dependence (caused by coarticulation) between phoneme-sized
units. It appears that they also succeed in incorporating the filter-
induced dependence into the model, since, both for clean speech
and for heavy mismatched conditions, filtering is the most
advantageous for sets of context-dependent units with as many
triphones as possible and triphones model a broad temporal input



context similar to the extension of the filters we have used. The
reason for the success of CDPLU'’s seems to lie in the selection of
contexts which they perform. With context-dependent units, the
contexts which are pooled together to train a model are more
homogeneous than with context-independent units and thus are
more robust to the transition spreading produced by the filter. That
increased robustness allows to take advantage of the beneficial
effects of the filter such as alleviation of the effect of the acoustic
channel or selection of the frequency zone where the
discrimination capability of the speech units is greatest.

However, we have worked so far with just one feature. In most
practical recognition systems, two features at least are used for
increased performance, so the experiments carried out for one
feature should be extended to a higher number of features. The
next section reports experiments using two features.

3. RESULTS WITH TWO FEATURES

For the two-feature case, the regression filter of length 5 (first-
order derivative window) presented above is used to supplement
the first feature. In fact, two strategies have been studied: the first,
hereafter referred to as series strategy, applies this filter to the first
filtered feature, where the filter is a short FIR filter (a Slepian of
length varying between 5 and 9) or an IIR filter (a RASTA with a
pole at z=r), whereas the second strategy, the parallel strategy,
applies the regression filter to the original non-filtered feature to
give the final second feature, while the first (as is the case for the
series strategy) is the original feature filtered with a FIR filter or
an IIR filter.

3.1. Results with DB1 for the Series Strategy

Filter Cl RCP 35
FIR 51.00 59.78
IIR r=0.97 55.34 63.95
No Filter 55.15 65.15

Table 2: Recognition results (DB1, %acc.) for the series strategy

In this case, filtering seems detrimental to recognition
performance and context-dependent units seem unable to cope
with it. Only the IIR filter with a pole at r=0.97, which does little
more than attenuating the low frequency region, yields good
results. The long-term spectrum (averaged over all cepstral
coefficients) for the non-filtered case (the first feature for the last
row of table 2) can be seen in figure 3, and that for the IIR filter
with r=0.97, by itself and convolved with the impulse response of
the regression filter, is shown in figure 4. Only the low frequency
region of the spectra is shown. As can be seen from figure 4, the
two filtered cases, which correspond to the first and second feature
of the last but one row of table 2, only differ in the low frequency
region: both annul the DC component but afterwards the first (the
IIR by itself) presents a sharp peak very near OHz, while the
second (the IIR followed by the regression filter) goes up
smoothly from the zero at OHz to a rounded peak near 6 Hz. The
IIR with r=0.9 shows the same pattern, except that the two long-

term spectra are less different (the initial peak being less sharp).
Similar plots to those of figure 3 for Slepian filters show that the
long-term spectra of the filter by itself and that of the filter
convolved with the impulse response of the regression filter are
too much alike. The redundancy in the frequency domain explains
the mediocre results, similar to those with one feature. The filter
which works best and outdoes even the non-filtered case (for the
Cl experiment) is the only one where there is some
complementariness in the long-term spectrum even if it is so in a
small yet perceptually important low frequency region [2]. The
IR filter with r=0.9 gives results between those of the IIR filter
with r=0.97 and those of the FIR filters; in fact, the simple IIR
filters outperform any FIR filter from »=0.8. In order to try to
obtain more different spectra, the second strategy was adopted.
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Figure 3: average long-term spectrum of DB1 for the non-filtered

case.
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Figure 4: average long-term spectrum of DB1 for IIR r=0.97 by
itself and followed by a regression filter.



3.2. Results with DB1 for the Parallel
Strategy

As can be seen from table 3, the paralle] strategy is not effective
either and it seems pointless to filter (with or without context-
dependent units) when dynamic parameters are included in the
feature vector, since the filtered feature (or dynamic feature)
already improves the discrimination by filtering the first feature,
and since both are handed over to the recognizer. Only removing
the DC component (IIR r=0.97) seems worthwhile.

Plots similar to figure 4 show that the long-term spectrum of the
second feature for the parallel strategy resembles the first feature
filtered with a FIR more closely than does the second feature for
the series strategy, which agrees with the fact that FIR filters give
worse results in table 3 than in table 2. For the IIR filters, the two
long-term spectra for the second feature in both cases look very
much alike, which explains the similarity of the results obtained.

Filter Cl RCP 35
FIR 43.57 55.55
IIR r = 0.97 56.26 65.06
No Filter 55.15 65.15

Table 3: Recognition results (DB1, %acc.) for the parallel strategy

In order to determine whether filtering was useful when using two
features, we carried out the experiments of section 2.2 (mismatch)
using two features.

3.3. Results with Unmatched Training and
Testing Conditions, Parallel Strategy

Those results are given in table 4. In this case it is worth filtering:
filters improve recognition in all cases and the improvement is
higher when context dependent units are used. Even FIR filters,
ineffective in the parallel strategy due to the redundance in the
bands of the long-term spectrum for DB1, work well. The result
for RCP3S is better than that for Tr/RCP35 in accuracy but not in
correctness. The result has been kept as it is for the sake of
consistency with the other results reported in this work.

Filter CI RCP 35 Tr/RCP 35
FIR 50.20 58.44 58.52
IIR r =0.97 61.26 65.88 62.44
No Filter 48.16 50.90 51.91

Table 4: Results (%accuracy) for the parallel strategy in the
mismatch case.

3.4. Conclusion

For clean speech without mismatch and using two features, at least
when the second is obtained by filtering with a regression filter,
filtering anything else than the zero frequency component seems
to have no advantages. Therefore the use of context-dependent
units only provides a better modelling of coarticulation, rather

than allowing to take advantage of the benefits supplied by
filtering (since there are no such advantages if the two features are
considered). In mismatched training and testing, filtering does
seem advantageous and context-dependent modelling does
increase its efficiency, much like what happened with just one
feature,

4. CONCLUSION

Simple IIR and FIR filters have been applied to continuous speech
recognition. If context-dependent units are used, the side effects of
the filters may be remedied and their benefits taken advantage of,
which results in a significant improvement in recognition
performance that adds up to the one provided by the use of context
dependent units. When no dynamic parameters are used, filtering
and CD units yield a substantial improvement even for clean
speech. When conventional dynamic parameters are incorporated
into the feature vector, filtering and CD units seem useful
especially for unmatched training and testing conditions. CD
modelling must be very effective for improving performance of
continuous speech recognition over telephone lines, where filters
are usually used. In order to make filtering and CD units useful
under all conditions, alternative dynamic features should be found.
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