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ABSTRACT

In this paper, we extend the Maximum Likelihood (ML)
training algorithm to the Minimum Classification Error
(MCE) training algorithm for optimal estimation of the
state-dependent polynomial coefficients in the trended HMM
[2). The problem of automatic speech recognition is viewed
as a discriminative dynamic data-fitting problem, where rel-
ative (not absolute) closeness in fitting an array of dynamic
speech models to the unknown speech data sequence provides
the recognition decision. In this view, the properties of the
MCE formulation for training the trended HMM are ana-
lyzed by fitting raw speech data using MCE-trained trended
HMMs, contrasting the poor discriminative fitting using the
ML-trained models. Comparisons between the phonetic clas-
sification as well as data-fitting results obtained with ML and
with MCE training algorithms demonstrate the effectiveness
of the discriminatively trained trended HMMs.

1. INTRODUCTION

The formulation of the trended HMM (also called the para-
metric nonstationary-state HMM or trajectory model) has
been successfully used in automatic speech recognition appli-
cations for the past few years [1, 2]. The model parameters of
the trended HMM, including state-dependent time-varying
Gaussian means, used in the past were trained by a modified
Viterbi algorithm based on the joint-state Maximum Likeli-
hood (ML) principle. The method of ML, however, need not
be optimal in terms of minimizing classification error rate
in recognition tasks in which the observation is assumed to
be produced by one of the many source classes. Only the
in-class information is available to train each model in the
ML approach, which leads to a poor discriminative ability.
Discrimination can be improved if out-of-class information is
also used in training the models. An alternative model esti-
mation criterion to the ML, called discriminative training [3]
has been proposed to improve the discrimination ability of
the models. This training approach takes into account other
competing models and aims at minimizing the recognition
error rate of the training data.

In this study, the minimum classification error (MCE) train-

ing algorithm, which minimizes the misclassification error
based on a given training samples using a gradient descent
method, is applied for estimating the state-dependent poly-
nomial coefficients in the trended HMM. The properties of
the MCE formulation for training the trended HMM is an-
alyzed by fitting raw speech data using MCE trained mod-
els, contrasting the poor discriminative fitting using the ML
trained models, and positive experimental results on pho-
netic classification using the TIMIT database are reported.

2. THE TRENDED HMM

The nonstationary state or trended HMM is of a data-
generative type and can be written as

O, F.(3) + Re(Z), (1)
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where O, t = 1,2,---,T is the data sequence of length T
generated from the trended HMM, B;(p) is the state (i)-
dependent polynomial regression coefficients of order P, the
term R, is the stationary residual (after the data-fitting by
the trended function or trajectory F:) assumed to be 1ID
and zero-mean white Gaussian source characterized by co-
variance matrix ¥;.

In the conventional HMM [4], the first term is only a function
of state 1, not a function of time t. Note that the polynomial
for each state depends not only on the coefficients B;(p),
but also on the time-shift parameter 7;. The term ¢t — 7;
represents the sojourn time in state i at time t, 7; registers
the time when state 2 in the HMM is just entered before re-
gression on time takes palce. Polynomial coefficients Bi{p)
are considered as true model parameters and 7; is merely an
auxiliary parameter for the purpose of obtaining maximal
accuracy in estimating B;(p). In the recognition step, 7; is
again estimated as the auxiliary parameter so as to achieve
a maximal score in matching the model to the unknown ut-
terance over all possible 7; values.



3. DISCRIMINATIVE TRAINING

In this section, the discriminative training process is briefly
summarized. One major contribution of this study is to de-
velop and implement the already well established discrim-
inative training for achieving optimal accuracy in estimat-
ing the state-dependent polynomial coefficients. Let &;,
j=1,2,---,K, denote the HMM for the j-th class, where X
is the total number of classes. The classifier based on these
K class-models is defined by & = {®;,%2,---,8x}. The
purpose of discriminative training is then to find the param-
eter set ® such that the probability of misclassifying all the
training tokens is minimized.

Let g; (O, ®) denotes the log-likelihood associated with the
optimal state sequence O for the input token O, obtained by
using Viterbi algorithm based on the HMM &; for the j-th
class. Then, for an utterance O from class ¢ the misclassifi-
cation measure d (O, ®) is defined as

d.(0,8) = —gc(O,®)+9x(0,®), (2)

x denoting the incorrect model with the highest log-
likelihood. In this definition, a negative value of d.(O,®)
corresponds to a correct classification. The definition in eqn.
(2) focuses on the comparison between the true model and
the best wrong model. A more general form of the misclas-
sification measure using the log-likelihoods from all models
can be found in [5]. A loss function with respect to the in-
put token is finally defined in terms of the misclassification
measure to be given as

T(0,8) = . S (3)
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which projects d (O, ®) into the interval [0,1]. Note that the
loss function Y(O, ®) is directly related to the recognition
error rate and is first-order differentiable with respect to all
the HMM parameters described by &;, 7 =1,2,---,K.

3.1. Gradient Descent Algorithm

Let ¢ be any parameter of the model ®. Provided T(O, &)
is differentiable with respect to ¢, the parameter can be ad-
Jjusted according to
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Here ¢ is the new estimate of the parameter and ¢ is a small
positive constant which monotonically decreases as the iter-
ation number increases. In case of a error-free recognition
T(O,®) ~ 0 or a complete loss T(O, ) ~ 1 the magnitude
of ¥ is minimum and therefore the change of ¢ becomes
small. On the other hand, the magnitude of % is maximum
when T(O,®) = 0.5, indicating the likelihoods for the cor-
rect and the best wrong model are equal. Therefore, the

training procedure focuses on input tokens which are likely
to be misclassified but can be classified correctly after proper
adjustment of the model parameters. Each model state is
characterized by a multivariate Gaussian density function
with diagonal covariance matrices in the form
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where B;(p), Z; denote the polynomial means and variances
of the i-th state of the model, (t — 7;) is the sojourn time in
state ¢ at time ¢ and n is the dimensionality. Superscripts
Tr,—1 and the symbol || denote the matrix transposition,
inversion and determinant respectively. Based on the model
j, the optimum state sequence @' = 0{,0;, -+,0% for an
input token O = 0,,0;,:--,0r with T frames is obtained
by means of Viterbi—algorithm. Then, the log-likelihood is
given by

bi(O|m) =
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p=0
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The simplified gradient descent algorithm is iteratively ap-
plied to all training tokens to minimize the loss function dur-
ing the training process.

3.2. Gradient Computation

By substituting eqns. (2), (5) and (6) in eqn. (4), the
gradient calculation of i-th state parameter B ;(r), r =
0,1,---, P, for the j-th model becomes
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where the adaptive step size is defined as
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and the set T;(7) includes all the time indices such that the
state index of the state sequence at time ¢t of belongs to state

if 3 =c (correct — class)
if 3 =x (wrong — class)
otherwise

Y =



ith in the N-state Markov chain
Ti(5) = {tl6i =4}, 1<i<N, 1<t<T

The gradient formula for the variances is similar to that of
the standard HMM [5] and is presented without derivation
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where I indicates the n x n unit matrix and £;; is the log-
transformed diagonal covariance matrices for easier imple-
mentation to make sure that the variances are always remain
positive during learning.

4. DATA FITTING EXPERIMENTS

The problem of automatic speech recognition can be viewed
as a statistical data-fitting problem, where relative closeness
in fitting an array of speech models to the unknown speech
data sequence provides the recognition decision. To study
this issue, experimental results on fitting the ML, and MCE
trained trended HMMs to real speech data are described in
this section. Once the structure of the trended HMM is cho-
sen, the MCE algorithm discussed in previous section is used
to reestimate the ML trained model parameters from the
given subset of training data. After the parameters are esti-
mated, the adequacy of the fitted model is checked through
diagnostic analysis of the residuals measuring closeness of
model fitting to data. R(XZ;) is computed according to
R.(Z;) = O. — Fi(i). The overall model data-fitting error
is then computed by the linear summation of the residual
square over the states and over the state-bound time frames.

The two test data sequences for the phones ae and aa are
selected from a female speaker of dialect region 1 of TIMIT
speech corpus. The raw speech data is in the form of a
digitally sampled signal at 16kHz. The mel-frequency cep-
stral coefficients are computed as in [5] with a frame rate of
10ms. Context independent, ML and MCE trained trended
HMMs with three-state left-to-right models are selected for
data-fitting analysis. The data-fitting results for the second-
order cepstral coefficients C; from phones ae are shown here
for illustration. C: contains information about summation
of log energies of low and high-frequency channels subtract-
ing those of mid-frequency chanmels. Similar results can be
obtained for other cepstral coefficients.

Figures 1 and 2 show the results of fitting the same utterance
of ae using the “correct” ae-model and using the “wrong”
aa-model, respectively. The top two plots in each figure show
the data-fitting results for ML trained standard HMM (left)
and linearly trended HMM (right). The bottom two sub-
plots in each figure show the data-fitting results using the
MCE trained HMMs with order 0 and 1. In these plots, the
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Figure 1: Fitting 3-state ae-models to ae data sequence

ML, P=0, Eror=176.79 ML, P=1, Errora152.16

Cepetrum 2

5 b b L b
(—

(l‘npwumz

> °
Nigd

Il

[

I

S

-
-~

=12 ~18
[} s 10 15 20 0 S 10 15 20
Time Time
MCE, Px0, Errora199.55 MCE, Pw1, Erron225.08
o (]
8 g N s
o\ AR
$ bl
~
- A2 -10 -
10 " \‘/‘\_ )
. -~
=15 =15
[} s 10 1% 20 ] s 10 15 20
Time Time

Figure 2: Fitting 3-state aa-models to ae data sequence

solid lines are the actual speech data, O, expressed as the C»
sequence, from one test token. The vertical axis represents
the magnitude of C; and the horizontal axis is the frame
number.

Note that in each plot the two break-points in the otherwise
continuous solid lines correspond to the frames where the
optimal state transitions occur from state 1 to state 2 and
from state .2 to state 3. Superimposed on the four plots
as dash-dot lines are the four different fitting functions F;
varying in the order of trend function and training procedure
as shown at the top of each plot. To appreciate the role of
MCE training in model’s discriminability, we examine the
data fitting errors in the bottom two plots, one with P =0
and the other with P = 1. For the correct model (Figure 1),
error reduction in data fitting by incorporating the MCE
training goes from 26.71 to 42.10. However, for the purpose
of rejecting the wrong model (Figure 2), the MCE method
plays a much more significant role — increasing the data
fitting error (a measure of the model discrimination power)
from 152.16 to as large as 225.08.



Type ML Method MCE Method

of Model | CI Rate | CD Rate | CI Rate | CD Rate
P=0 53.07% 76.62% 63.98% 79.08%
P=1 54.11% 77.07% 69.33% 82.89%

Table 1: TIMIT 39-phone context independent (CI) and
context dependent (CD) classification rate using ML (left)
and MCE (right) training methods

5. PHONETIC CLASSIFICATION
EXPERIMENTS

The standard TIMIT database is chosen for the evaluation
experiments. The training subset of the TIMIT database (a
total of 462 different speakers) is divided into training-set
and test set with no overlapping speakers. The training-set
consists of 442 speakers resulting in 3536 sentences and the
test set consists of 160 sentences spoken from 20 speakers.
The experiments described in this paper aim at classifying
the 61 quasi-phonemic labels defined in the TIMIT database
folded into 39 classes.

The acoustic analysis used a 21 channel filterbank with ap-
proximate Mel spaced filters at a rate of 100Hz. Twelve
Mel frequency cepstral coefficients and their differences were
formed by taking a discrete cosine transform of the log chan-
nel energies (the twelve coefficients exclude the zeroth co-
efficient which is the log energy). Thus each 10ms speech
frame is represented by a vector of 25 components includ-
ing the delta log energy. Each phone is a left-right, with
only self and forward transition, 3-state HMM with Gaus-
sian state observation density. The covariance matrices in
all the states of all the models are diagonal. All transition
probabilities are uniformly set to 0.5 (all transitions from a
state are considered equally likely) and are not trained.

For the MCE approach, the initial models are trained us-
ing the ML objective function with 5 iterations of modified
Viterbi algorithm based on the most probable state sequence
[1]. The parameters of the HMM are then modified by em-
ploying the discriminative training method based on MCE
optimization as described in Section 3. A complete pass
through the training data set is called an epoch. A to-
tal of 5 epochs are performed and only the best-incorrect-
class is used in the misclassification measure. For context-
independent (CI) model, a total of 39 models (39 x 3 =
117 states) are constructed, one for each of the 39 classes in-
tended for the classification task. The procedure outlined in
[5] has been adopted to create context-dependent CD mod-
els, which results in a total of 1209 states.

Several experiments are run to evaluate the improvement
achieved by MCE training. The performance of the pho-
netic recognizer, organized as the classification rate in terms
of the polynomial trend function order (P) is listed in Ta-
ble 1. In all the experiments MCE training is more stable
and achieved an average of 25% classification error rate re-

duction, uniformly across all types of speech models (both
context-dependent and context-independent ones) over the
conventional ML-based training. For the CI linear trended
HMM, the classification rate is increased from 54.11% (when
ML training is used) to 69.33% (when MCE training is used)
and yielding an 33.2% error rate reduction. It also represents
a 14.85% error rate reduction compared with the correspond-
ing MCE trained standard HMM. We observe that the dif-
ference in performance between the P = 0 and P =1 HMM
is more significant when MCE training are used than the ML
training. The best result is achieved by using a combination
of linear (P =-1) trended BMM and the MCE training al-
gorithm. These performance results are consistent with the
data-fitting results and have demonstrated the superiority
of the MCE-trained linear trended HMMs over the regular
linear trended HMMs.

6. CONCLUSIONS

In this study, the MCE training method using the gradient
descent algorithm is derived, implemented and evaluated for
optimally estimating the state-dependent polynomial coeffi-
cients in the trended HMM. Development of this new train-
ing approach is motivated by the poor discriminative ability
of conventional ML trained models. The phonetic classifi-
cation evaluation results show consistent superiority of the
MCE approach over earlier ML approach. The greatest error
reduction (about 33.2%) has been observed when the first-
order trended functions are used in the CI models. The data-
fitting results also support the superiority of the MCE ap-
proach. We observed that the MCE trained, trended HMM
does not fit the speech data (belonging to the correct class)
as closely as the ML trained counterpart, but it fits the data
belonging to the wrong class much more poorly than the ML
trained model. This apparently gives the mechanism with
which the MCE trained model is more capable of discrimi-
nating wrong sequences from the correct sequences than the
ML trained model in our phonetic classification experiments.
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