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Abstract

The use of a speech recognition system with telephone
channel environments, or different microphones, requires
channel equalisation. In speech recognition, the speech
models provide a bank of statistical information that can
be used in the channel identification and equalisation
process. In this paper we consider HMM-based channel
equalisation, and present results demonstrating that
substantial improvement can be obtained through the
equalisation process.

An alternative method is to use a set of features which is
more robust to channel distortion. Channel distortions
result in an amplitude-tilt of the speech cepstrum, and so
differential cepstral features should provide a measure of
immunity to channel distortions. In particular the cepstral-
time feature matrix, in addition to providing a framework
for representing speech dynamics, can be made robust to
channel distortions. We present results demonstrating that
a major advantage of cepstral-time matrices is their
channel insensitive character.

1 Introduction

In this paper we consider the problem of recognition of
speech distorted in transmission through a communication
channel or by a microphone. The channel distortion is
modelled as an unknown convolutional operation. From
the talker to the recognition system, three sources of
convolutional distortion can be identified; namely the
acoustic environment in which the microphone is placed,
the microphone, and the communication channel.
In the time domain, the channel output y(m), which is the
input to the speech recogniser, is modelled as
y(m) = (x(m)+ n,(m))*h(m) + n,(m) (1)
where x(m) is the clean speech, h(m) is the channel
response, n (m) is the acoustic noise, and n(m) is the
channel noise. It is assumed that the channel distortion is
dominant, and the channel noise and the acoustic noise can

be ignored. An ideal channel equaliser, Hmv(f), has a
frequency response equal to the inverse of the channel.
Real communication channels may not be invertible, hence

H"'V(f), may not be well defined for all frequencies. Such a
situation occurs in channels with bands of frequencies in
which the signals are heavily attenuated and immersed in
noise. A second form of non-invertible channel occurs

when the channel is non-minimum phase. However,
speech recognition systems use features derived from the
power spectrum, and therefore the channel magnitude
response and not the channel phase is of primary interest.
In speech recognition systems where the speech features
are based on log-spectra, such as mel-frequency cepstral
coefficients (MFCCs), the convolutional distortion
becomes an additive distortion as
y(m)y=x(m)+h 2
Where y(m), x(m) and b are the channel-distorted speech,
the channel input speech and the channel cepstral vectors
respectively. Note that in the logarithmic domain the effect
of a channel distortion is the addition of a tilt to the
channel input signal cepstrum.
There are two broad approaches to robust speech
recognition. One approach attempts to use an equaliser to
suppress the distortion k. The second approach uses
speech features which are inherently robust to channel
distortion. Mokbel eral (1993) developed a method for on-
line adaptation of a speech recognition system to
variations in telephone line conditions. A similar approach
is also described in Wittmann (1993). Hermansky and
Morgan (1992) proposed the use of bandpass filters on the
time-variations of the log spectral speech bands. Hanson
and Applebaum (1993) compare the effect of bandpass
filtering of log spectral bands with a highpass filtering.
In the remainder of this paper Bayesian equalisation based
on hidden Markov models, and channel-robust features
are considered.

2 Bayesian Equalisation Based on HMMs

This section considers blind equalisation in applications
where the statistics of the channel input can be modelled
by a set of hidden Markov models as in recognition of
speech distorted by a communication channel or a
microphone figure(1). In speech recognition, it is assumed
that the channel inputs are acoustic realisations of words
selected from a vocabulary of size V. HMM-based
equalisation can be stated as follows : Given a channel
output sequence Y and that the channel input is drawn
from a set of V HMMs M={Mi=1, ..., V} estimate the
channel response and the input.

The likelihood of an HMM 4/ and a sequence of channel

input vectors X = [x(0), ..., x(N-I)] can be expressed as



HMMs of the channel input
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Figure 1 lllustration of a channel with the input alphabet
modelled by a set of HMMs.
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s/ XIMs) is the likelihood that the sequence X
was generated by the state sequence s of model 91{ and
P {sI#) is the Markovian pmf of the state sequence s.
The state observation is modelled by a Gaussian pdf as
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where 4 and X are the mean vector and the covariance
matrix of the Gaussian pdf of the state s. For a given
model ﬂ/[, and state sequence S= {s(0), s(1), ..., s(N-1)},

the pdf of a sequence of N independent observation
vectors Y = {y(0), y(1), ..., y(N-1)} is
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From Eq. (5) the maximum likelihood estimate of & is
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2.1 MAP Channel Estimate Based on HMMs

Given a sequence Y of N P-dimensional vectors, the a
posteriori pdf of the channel & along a state sequence s of
an HMM £, is defined as
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where it is assumed that each state is Gaussian with a
mean vector [ (m) and a covariance matrix Z_ (m),and

that the channel 2 is also Gaussian with a mean vector u,
and a covariance matrix X . The MAP estimate along state
s, can be obtained as
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The MAP estimate over all HMMs is given by
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2.2 Use of Statistical Averages Over All HMMs

A simple approach to blind equalisation, is to use the
average mean vector f, and the covariance matrix Zxx,
taken over all the states of all the HMMs. The ML
estimate of the channel, AL is defined as

RML = (5 - 1) (10)

where ¥ is the time-averaged channel output. The channel
input estimate is

X =y, —hML

1)

The MAP channel estimate becomes
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2.3 Hypothesised-Input HMM

For each HMM in the input vocabulary, a channel estimate
is obtained and used to equalise the channel output. Thus a

channel estimate ﬁw is based on the hypothesis that the

input word is w. It is expected that a good channel estimate
is obtained from the correctly hypothesised HMM, and a
poorer estimate from an incorrectly hypothesised HMM.
The hypothesised-input HMM algorithm is as follows :
For 1 =1 to number of words V {

step-1 Using HMM, 91{, estimate the channel, A;,
step-2 Using, I;,-, estimate the input as ,\?(ﬁi) =y- ﬁi
step-3 Compute a score for model 4/ given i(ﬁi) .}
Step-4 Select the most probable word.

y=x+h
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Figure 2 Hypothesised channel estimation procedure.



3 Cepstral-Time as Channel-Robust Features.

A cepstral-time matrix, ¢(n,m), may be obtained from a 2-
D DCT of a log spectral-time matrix, X(f.k). [Milner
1994]. In transformation from a spectral-time to a
cepstral-time matrix, via a 2-D DCT, the frequency axis f
of the spectral-time matrix is converted to quefrency n and
the time axis, & is converted to frequency, m. The lower
index coefficients along the axis n represent the spectral
envelope, whereas the higher coefficients represent the
pitch and the excitation. Along the axis, m, the lower
coefficients represent the long time variation of the
cepstral coefficients, and the higher coefficients the short
time variation. Figure 3 illustrates these regions.

The cepstral-time matrix contains information regarding
the transitional dynamics of the speech. The zeroth column
contains the time-averaged value of the cepstral
coefficient. The effects of channel distortion is
concentrated in this column and the exclusion of this
column provides a channel robust feature set.
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Figure 3 Regions of cepstral-time matrix.

4 Experimental Results

The experiments were performed using speech distorted by
simulated channel responses. Six channel distortion,
shown in Figure 4, were chosen for experimentation. The
filters were designed specifically to attenuate parts of the
frequency spectrum where much of the speech energy is
found (up to 3kHz). The filters a to e are all invertible,
where as filter f is non-invertible. Filter f is designed to
simulate a bandpass telephone channel, with sharp band
limiting between 300Hz and 3000Hz. The HMMs were
trained on clean speech. The speech features were 15
dimensional mel-frequency cepstral coefficients (MFCCs),
including the coefficient ¢(0) . The speech database used
was the NOISEX database of noisy speaker-independent
isolated spoken English digits [VARGA 1992].

4.1 Channel Equalisation
Table-1 shows experimental results for the channel
distortions, a to f, and two equalisation methods. The first

is based on ML estimation. The second technique uses the
hypothesised maximum likelihood channel estimation
technique of Section 2.3 denoted as ML_HMM. To
compare performance, the row labelled NCC, shows the
case where no channel compensation has been applied.
The channel distortions 4.c to 4.e severely attenuate the
speech spectrum, and subsequently cause deterioration in
recognition performance, as shown by NCC. The
maximum likelihood channel estimate, ML, using an
average of all HMM means, produces good improvement
for all channel distortions. However, the maximum
likelihood estimate based on the hypothesised-HMM
approach gives high accuracy for all the channel
distortions tested. The results of the maximum likelihood
estimates in table-1 are reasonably constant for all the
channel distortions.

Figure 5 shows the log filter bank representation of two
channel distortion filters, namely 4.d and 4.e. Also shown
are the two estimates, based on the maximum likelihood,
averaged over all HMMs ML, and the maximum likelihood
estimate computed using the most likely HMM
ML_HMM. The figure shows that these techniques both
produce good estimates of the channel distortion. The
ML _HMM produces a slightly better estimate of the
channel than the ML approach.

Flat] a b ¢ d e f
NCC 100] 95| S50} 10] 10} 10| 25
ML 100f 941 944 94| 94 ] 93| 89
ML_HMM | 100} 100{ 100| 100] 100] 100| 100

Table 1 % Recognition accuracy of blind deconvolution.
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Figure 4 Synthesised channel distortions.
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Figure 5 lllustration of actual and estimated channel
response for two channels.

4.2 Channel Robust Features

Table-2 shows the recognition performance for the 6
channel distortions, a to f, and for no channel distortion,
flat response. The results show the performance of the
15x4, truncated cepstral-time matrix, and the 14x3
truncated cepstral-time matrix. Additionally the
performance of 15 dimensional cepstral vectors is also
shown. The speech data base in this experiment is
NOISEX.

Table-2 shows that the 14x3 cepstral-time matrix remains
unaffected by the invertible channel distortions, 4.a to 4.e,
in comparison to the non-truncated 15x4 cepstral-time
matrix which suffers degradation as a result of the channel.
However the 14x3 cepstral-time matrix has not been
completely robust to the non-invertible channel distortion,
4.f, although it does outperform the 15x4 cepstral-time
matrix.

Figure 6 shows a plot of two 15x4 cepstral-time matrices.
In Figure 6-a the cepstral-time matrix has been obtained
from a distortion-free speech signal, and in Figure 6-b the
same piece of speech has been corrupted by channel 4.e. It
can be seen that the first column of the cepstral-time
matrix has been contaminated by the channel, but the inner
matrix has remained unaffected by the channel distortion.

Flal a b c d| e f
15-dim cep. vector] 100} 95] 50] 10| 10| 10} 25
15x4 C-T matrix ] 100} 91| 74| 45| 10] 12| 58
14x3 C-T matrix § 100} 1001 100} 100i 100 100] 90

Table 2 % Recognition accuracy of cepstral-time matrices.

5 Conclusion.

Two approaches for the recognition of channel-distorted
speech have been investigated. The first approach is based
on blind deconvolution given the channel output signal
and HMMs of the channel input signal. Maximum
likelihood channel equalisation offer significant
improvement in recognition performance. In particular a
hypothesised-input deconvolution method, based on using

each HMM to provide a different channel estimate,
improves recognition accuracy considerably. The second
part of this paper investigated the use of features which are
robust to channel distortion. It has been shown that the
cepstral-time matrix, with the first column omitted, is
robust to channel distortions.

cepstral coefficient 10 = > cepstral time variation

Figure 6 Cepstral-time matrix of a distorted and
undistorted speech signal.
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