A Model For The Acoustic Phonetic Structure Of Arabic Language Using A Single
Ergodic Hidden Markov Model

M.A.Mokhtar & A.Z.El-Abddin

Electrical Engineering Department, Faculty of Engineering,
Alexandria University, Alexandria, EGYPT

ABSTRACT

It is proposed to model the acoustic-phonetic structure of the
Arabic language using a single ergodic hidden Markov model
(HMM), since a single HMM (about 40-50 states) can be used to
represent all acoustic phonetic effects. In this paper, we represent
the techniques and algorithms used to perform that model, the
problems associated with representing the whole acoustic-
phonetic structure, the characteristics of the model, and how it
performs as a phonetic decoder for recognition of fluent Arabic
speech. The model is trained, segmented (manually and
automatically), and labeled using a fixed number of phonemes,
each of which has a direct correspondence to the states of the
model. The model assumes that the observed spectral vectors
were generated by a Gaussian source. The inherent variability of
each phoneme is modeled as the observable random process of
the Markov chain, while the phonotactic model of the
unobservable phonetic sequence is represented by the state
transition matrix of the HMM. The model incorporated the
variable duration feature densities in each state to account for the
fact that vowel-like sounds have vastly different duration
characteristics than consonant-like sounds. It is shown that the
difficulties in developing an acoustic-phonetic model are not due
to the inherent deficiencies of the concept presented. Instead they
are due to the choice of the phonemes to be modeled, the selected
parametrization of the data, and appropriate choice of the variant
of the ergodic HMM. The model used for the recognition
experiments is clearly not complete, but it adequately performs
phonetic transcription of the unknown utterances, thereby serving
as the initial step towards continuous speech recognition.

1. INTRODUCTION

Automatic speech recognition has gradually evolved, particularly
in the past few years, from limited vocabulary isolated word
systems to very large vocabulary, speaker independent
recognizers. Most large vocabulary speech recognition systems
have adopted the strategy of using a unit of speech that is shorter
than a word and for which the number of such units required to
represent all spoken sounds is relatively small{1]. Typical choices
for such units includé diaphones, phonemes, phones, or arbitrary.
Each of these choices has advantages and disadvantages in
relationship to issues such as the recognition rules’ complexity,
the size of vocabulary, the speech quality, etc. After studying the
phonetic characteristics of modern standard Arabic ( few vowels ,
few consonants), we have chosen phonemes as the basic unit for

representing words[2). There are several possible choices for
what type of signal model is used for characterizing the properties
of a given signal. Broadly one can dichotomize the types of signal
model into the class of deterministic models, and the class of
statistical models{3). The most popular statistical model used in
speech recognition is the Hidden Markov Model (HMM), with
the HMM-based system achieving somewhat higher performance
than the template based approach(4]. For this procedure, training
consists of estimating the parameters (means,covariances) of
probabilistic model for each phoneme. A single HMM can be
used to represent all acoustic phonetic effects[1] An ergodic
HMM was used in which each state represented an acoustic-
phonetic unit, and phonotactics are modeled by a simple diagram
model. The model incorporated the variable duration feature in
each state to account for the fact that vowel-like sounds have
vastly different durational characteristics than consonant-like
sounds. To classify an unknown utterance, one computes the
likelihood that was generated by each of the models derived
during training. The utterance is recognized as the phoneme
whose gives the highest likelihood score.[5],[1]

2. THE ACOUSTIC-PHONETIC MODEL

A block diagram of a complete continuous speech- recognition
system based on HMM is shown in fig.(1). There are essentially
three steps in the recognition algorithm [6]:

1) Spectral analysis- the speech signal, s(n), is converted to a set
of LPC derived cepstral (weighted) and delta cepstral (weighted)
vectors.

2) Likelihood computation- the sequence of spectral vectors of the
unknown speech signal is matched against a set of stored single-
phoneme model using the Modified Viterbi algorithm. The output
of this process is a set of the likelihood score for all states at all
observation time ¢.

3) Decision rule- we can trace back from the final state to recover
the highest likelihood score sequence and then an optimal
phonetic transcription of the utterance.

2.1. LPC Cepstral Analysis [3],{7],[4],[5]

The speech was recorded using a standard mic, then sampled at
11.1KHz. The speech signal, s, is converted to a set of LPC
derived cepstral (weighted) and delta- cepstral (weighted)
vectors. The LPC from end processing for recognition is shown in
Fig.(2). The overall system is a block processing model in which
a frame of N samples (30msec) is processed and a vector of
features is computed. The steps in the processing are:[3],{4].



1. Pre-emphasis: The digitized speech signal is processed by a
first- order digital network in order to spectrally flatten the
signal

S(n)=s(n)-as(n-1) 0<a<l )

2. Blocking into frames:._ Sections of N consecutive speech
samples(we use N=300 corresponding to 30msec) of signal
are used as a single frame. Consecutive frames are spaced M
samples apart(we use M=100 corresponding to /0 msec, or 20
msec overlap)[3]}.

3. Frame windowing: Each frame is multiplied by an N-sample
window(we use Hamming window) so as to minimize the
adverse effects of chopping an N-sample section out of the
speech signal.

4. Auto correlation analysis: Each windowed set of speech
samples is auto-correlated to give a set of (p+1) coefficients,
where p is the order of the desired LPC analysis (we use

p=8)7].

S. LPC /Cepstral analysis: For each frame vectors of LPC
coefficients are computed from the auto-correlation vector
using Levinsom or Durbin recursion method. The LPC
derived cepstral vector is then computed up to the Q'th
component, where 0>p, 0=12 in our implementation[3],(7]

6. Cepstral weighting: The Q-coefTicient cepstral vector,Cyfm) ,
at time frame I, is weighted by window W,(m) of the form

Wc(m).—_[H%sin(%)] 1sm<Q )

C,(m)=C,(m)-W (m) 3

7. Delta cepstrum: The time derivative of the sequence of
weighted cepstral vector is approximated by a first-order
orthogonal polynomial over a finite length window of (2K+1)
frames, centered around the current vector (K=2 in our
implementation), hence, the derivative is computed from a 5-
frame window. The derivative contains important information
about the delta temporal rate of change of the cepstrum , and
is computed as:

AC,m) = [T G, ()] 6~%e 1mn
Where G is a given term so that the variances of

C,(m) and AC,(m) are about the same(For our system,

the value of G was 0.375)[5].
The overall observation vector, Oy, used for scoring the HMM's is
the concatenation of the weighted cepstral vector, and the
corresponding weighted delta cepstrum vector, i.e.:

0, = {C,(m), A€, (m)] ®

and consists of 24 coefficients per vector, which were used in all
the experiments described below.

to give

2.2. HMM Characterization Of Phonemes [1]

The model that we use to represents the acoustic-phonetic
structure of the Arabic language is the Continuously Variable
Duration HMM (CVDHMM). We have considered the special

case of ergodic or fully connected HMMs in which every state of
the model could be reached (in a single step) from every other
state of the model. This type of model has the property that every

ajy coefficient is positive[1]. The states of the model {q,}

represent the hidden phonetic units. The phonotactic structure of
the language is modeled, to a first order approximation, by the
state transition matrix a;;, which defines the probability of
occwrrence of state(phoneme) gi at time ¢+ r conditioned on state
(phoneme) g; at time ¢, where 7 is the duration of phoneme i. The
information about the temporal structure of the hidden units is
contained in the set of durational densities {d;(1)}. The speech
acoustic correlates are the observations, denoted Oy, and their
distributions, which are defined by a set of observation densities

Lo

each state j is characterized by the following:

1. A State transition vector: a; with components a; =
probability of making a transition to state 7 (at the next
transition instant), given that the system is currently at state
j. For the ergodic model of Fig , all states can be
transmitted to all other states, and satisfies the stochastic
constraint:

>a,=1a,)0,V1l< jisn (©)
i=
2. A State observation density, bj(O,), of the form [4],[5],[8]):

5,(0)=Y" CouNIO,, ;U] @

i.e, a continuous mixture density where O; is the
observation vector (e.g., cepstral coefficient vector resulting
from the LPC analysis), C is the mixture weight for the
m’th component in state j, ]\[ ] represents a multivariate
normal density [i.e., Gaussian] with the mean vector u;,, for
mixture m in the state j, and covariance matrix U’ for
mixture m in state j. Typically, we use anywhere from M—
to M=q mixture components. The mixture gains C m Satisty
the stochastic constraint:

Zf:]cjm ij >0,1 < ] < n,l <m<M @)

So that the probability density function (pdf) is properly
normalized, i.e.,

].;bj(x)dle

. Such a model is illustrated in Fig (3), in which

,1<j<n 0)

In practice, we have observed that components of O are
essentially uncorrelated. Hence, we assume that all
components of O are statistically uncorrelated. Thus, U
becomes a diagonal covariance matrix, and (6) can 4)«:
expressed sxmply as [4):

u HeXP[ (0,d)- ﬂ,md) /1207%,4]
=1 (2r) o1 (H )md )

Where O,d) is the d'th component of the observation
vector, D is the number of components in O, Himd is the

5,(0,)= %
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d'th component of the Hims and °2jmd is the d'th
covariance of Uy,

3.  State duration probability [S1, d;(), where 7 is the number
of frames spent in state j, andj d is a parametric state
duration density. In practice, it has been argued that the
duration structure of the speech code is best modeled by a

set of asymmetrical Gamma densities with:
v, gv;=l -
g/d”’ e
I'(v;)

with parameters v,=mean 2fvar. and ¢;=mean/var.
Based on the above, ﬂ(e process of building an HMM of the type
shown in Fig , to characterize a phoneme, requires estimation of:
1) N values of a;, the state transition coefficients;
2) NM values of Cl , the mixture gains;
3) NMD values of pm » the mean values of the observations,
4) NMD values o [U;m]dr the diagonal covariances of the
observations;
5) N values of mean (d,{7)), the state-duration density mean;
6) N values of variance (d (7)), the state-duration density
variance.
All these parameters are estimated or measured directly from a
training set as discussed in the next section.

d, (1= an

2.3. Parameter Estimation

The model parameters are estimated from the analyzed speech
and statistics of the phonetic segments (manually) except for the
state transition matrix A, which is estimated from a very large
corpus of text (novel). The count of the phoneme transitions was
obtained directly from the transcriptions used in that novel. Each
of the words in the novel was considered an isolated utterance,
bounded by silence, and transitions between the phonemes were
counted. The obvious shortcoming of such a procedure is that the
frequency of occurrence of each of the words was not included in
the estimation[l]. A study of the relationships between the
different sounds of modern standard Arabic enabled us to arrive
at a model which consists of some phonetic elements which are
most suited to the recognition of speech[2]. There are six Arabic
vowels, three short and three long vowels. In Arabic, vowels
cannot be initials and can occur either between two consonants or
final in word. Unlike the consonants, the vowels have no segment
duration charges, except that a long vowel is about twice the
length of a short vowel{2]. There are 28 consonants in Arabic and
all can occur as initial, intervocalic, or syllable closing.
Intervocalic and initial consonants have durations which are about
half those of syllable closing or syllable suffix consonants. Some
continuant initial consonants can be large than intervocalic
consonants, but the difference in length is not very significant{2].
The resulting set of 40 phonemes and silence which formed the
basis of the 41 states (phonemes) of the acoustic-phonetic model
are listed in [2]. The CVDHMM requires information about the
distributions of duration's of each of the phonemes (states). The
training data were segmented manually into phonemes, then the
duration of each phoneme was measured from the direct
segmentation. Then, the duration parameters are obtained by
calculating the mean duration of each phoneme and its variance,

which are them converted into the parameters = and . However,
for the B parameters, experience has shown that good initial
estimates are essential in the continuous distributions case. Such
initial estimates can be obtained in a number of ways, including
manual segmentation of the observation sequences into phonemes
(states) with averaging of observations within statesfS). All
frames (vectors) for a given state (phoneme) are used as input to a
clustering algorithm (i.e., a vector quantizer design
procedure[5][10]) which determines the best M cluster solution
(using an Euclidean distortion measure), which is generally the
centroid of the frames in the training set assigned to them’th
region. From the clustering, an updated set of model parameters
are derived as follows[3]):

ij= number of vectors classified in cluster m of state j divided
by the number of vectors in state ;.

= sample mean of the vectors classified in cluster m of state j,

E 0,(d) (12)

Him
M, jm (d) -

Um= sa.mple covariance. matrix of the vectors classified in
cIluster m of state j,

1 Sne s
Upn(r8) = 2207 = 1n(OXO = 11,0 (5)) 013)

Because there was only a limited amount of data available, a
constant (= 0.02 or 0.07) was added to the diagonal elements of
the covariance matrix, U, to prevent it from becoming singular.
This method had a great effect on recognition results{1].

3. THE RECOGNITION EXPERIMENT

In the case of a single HMM all we need to determine is the best
estimate of the state sequence of the model which coincidentally
provides the best estimate of the phoneme string of the utterance.
An efficient way to optimally determine a state sequence of a
CVDHMM through an utterance is using a modified Viterbi
algorithm which needs to account for the durational densities.
This calculation is implemented as follows[1][S]. Let d{j) be the
likelihood of the state sequence ending in state g; and
corresponding to the first ¢ observations which maximize the joint
likelihood of state and observation sequence :

a,(j) = max{max{a,_ (a,d, (T)Hb (Or-cv0)}}

sisn

for 1<j<n and ] <t<T. If, at the same time, we set
B,(j) = (,7) = argmax{d, (/)}
LT

then we can trace back from the final state to recover the optimal
state sequence and then an optimal phoneme sequence. Thus we
obtain the phonetic transcription of the utterance.

Jr = argmax{a,(j)}
J

4. RESULTS AND CONCLUSION

Two test sentences were used for testing the model. The
sentences contain mostly the phonemes of the Arabic language



that were used in the training process, however, the two sentences
were not used in the training. Both sentences, which represents
two Arabic proverbs), along with their state sequence are listed in
table (1). The recognition score ranged between 65 % to 70 %.
The results of the recognition test indicates that it is of a very
little difference whether the testing data was used in training the
model or not. The results of the recognition experiments clearly
show the power of the CVDHMM in representing the acoustic-
phonetic structure of the Arabic language. The simplicity of
representing & phoneme by a single state in 8 CVDHMM is very
attractive al.hough allowing more than one state to model
separate parts of phonemes could improve recognition results. It
is worth noting that by examining the acoustic-phonetic units, the
parameters chosen to describe the properties of those units, and
by further experiments with different models, improvement in the
recognition performance is expected.
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