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ABSTRACT

Neural network classifiers can provide outputs that estimate
Bayesian posterior probabilities under the assumptions that
an infinite amount of training data are available, the network
is sufficiently complex and the training can reach the global
minimum. In practice, however, the number of training to-
kens is limited and may not accurately reflect the prior class
probabilities and true likelihood distributions. Additionally,
computational constraints place a limit on the complexity of
the network. Consequently, practical networks often fall far
short of being ideal estimators.

We address this problem and propose a new method of im-
proved probability estimation by combining neural network
models with empirical probability estimation methods. We
use a histogram-based estimation method to remap the net-
work outputs to match the data and thereby improve the
accuracy of the probability estimates. QOur current experi-
ments on the OGI Census Year corpus resulted in a 20.6%
reduction in recognition errors at the utterance level.

1. Introduction

Traditionally neural network outputs are expected to have
binary values that should always be near zero or one. Unless
the value of a “correct” network output is greater than 0.5,
the classification decisions are often considered incorrect and
it is thought that more training is still required. However,
this might not always be true, because the output values of
the neural networks often approximate Bayesian posterior
probabilities [5]. If density functions of classes overlap, the
network outputs need not be close to 0 or 1: they can have
values ranging from 0.0 to 1.0. Therefore applying extra
training using those patterns that fail to generate outputs
close to the desired values will be counter productive, be-
cause it alters the distributions and makes the network less
likely to generate the correct Bayesian posterior probabili-
ties [2].

Unlike conventional Bayesian classifiers, which derive the
Bayesian posterior probabilities from likelihood indirectly by
Bayes Rule, neural network classifiers can provide outputs

that estimate Bayesian posterior probabilities directly. The
latter is however true only under the assumptions that (1)an
infinite amount of training data is available, (2) the net-
work is sufficiently complex and (3) the training error can
reach the global minimum [5]. In practice, however, these
assumptions are not satisfied and therefore neural network
outputs may fail to approximate Bayesian posterior proba-
bilities well.

2. Combining Probability Estimation
Methods with Neural Networks

We can measure the accuracy of a network’s probability esi-
mates by making a histogram of the frequency with which a
network output matches the desired output in a given data
set, with histogram buckets determined by the output values
of the network. Our experimental results (shown in Section
4) confirm that the network outputs do not always estimate
probabilities accurately. Earlier simulation results [5] also
demonstrate that the neural network classifiers provide out-
puts that estimate Bayesian posterior probabilities, with the
estimation accuracy influenced by the network complexity,
the number of training data, and the degree to which train-
ing data reflect true likelihood distributions and the prior
class probabilities.
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Figure 1: A conceptual posterior probability estimation
model based on neural networks

To solve this problem, we propose a new approach to im-
prove probability estimates by combining neural network
models with empirical probability estimation methods. Fig-
ure 1 shows our conceptual posterior probability estimation
model based on neural networks. We use neural network out-
puts as the first estimates of Bayesian posterior probabilities.



Neural networks are flexible in modeling regularities in the
data, but an over-flexible network can be misled by stray
correlations within the data into “discovering” improbable
structure [4]. Our empirical probability estimation based on
histograms is to remap the network outputs to match the
data and thereby improve the accuracy of the probability es-
timation. The strategy is to find a simple function for each
unit in the output layer of the network; this function maps
that output value of the unit to a more accurate estimate of
the true probability.

3. Empirical Probability Estimation
Models based on MLPs

Figure 2 shows our empirical probability estimation model
based on a multilayer perceptron (MLP) neural network. We
remap the outputs of neural networks using histograms.
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Figure 2: An empirical probability estimation model based
on an MLP neural network

We made a histogram of the frequency with which a net-
work output matches the desired output in a given data set,
with histogram buckets determined by the output value of
the network. For example, if we put all outputs with a value
between 0.3 and 0.4 in one bucket, ideally the frequency of
correct matches for this bucket will be about 30 to 40 per-
cent of the total hits for this bucket. That is, if the neural
network provides outputs that accurately estimate posterior
probabilities, the histograms should be close to a diagonal
line, when plotted against network outputs.

Because different classes have different density distributions

of patterns, if we use an identical bucket set for all classes
we may leave some buckets containing no histogram values.
This type of histogram is not smooth enough for remapping.
We solve this problem by dynamically adjusting the buckets
of a class based on the output distribution of this class. Be-
cause an ideal histogram is a diagonal line, we assume that
a histogram curve that is close to this diagonal line may
be effective in increasing the estimation accuracy through
remapping. In our approach, we developed a non-parametric
smoothing method to dynamically adjust the buckets of each
class based on the output distributions of this class until we
get a bucket set that gives a monotonically increasing his-
togram distribution.

Figure 3 shows an example histogram with bucket-
adjustment by a solid line. It was computed from a neural
network trained on the OGI Census Year corpus, using a
cross-validation data set. The dashed line is a diagonal line,
which shows the histogram of an ideal estimator. From these
figures, we can see that these two histograms are quite differ-
ent from each other, which confirms that practical networks
often fall short of being ideal estimators.

4. Experiments and Evaluations

4.1. Experimental Setup

Our experimental task is recognition of the OGI Census Year
corpus. This corpus was collected and created by CSLU, as
part of a study to determine the feasibility of using an au-
tomated spoken questionnaire to collect information for the
Year 2000 United States Census [1]. The goal of the study
was to develop and evaluate a telephone questionnaire that
automatically captures and recognizes the following infor-
mation: (1) full name, (2) sex, (3) birth date, (4) marital
status, (5) Hispanic origin, and (6) race. The OGI Census
Year corpus comes from the birth-date database.

We separate this data set into three parts by the ratios 3:1:1,
used as training data, cross-validation data and test data,
respectively.

The MLP neural network built for the OGI Census Year
speech recognition system is a three-layer perceptron neural
network consisting of 56 input nodes, 45 hidden nodes and
123 output nodes that correspond to 123 biphone classes. It
is trained with stochastic back propagation algorithms, using
a cross-entropy cost function. We use an empirical probabil-
ity estimation model (shown in Figure 2) based on this MLP
neural network as the phoneme probability estimator instead
of an MLP neural network.

Below are our experimental results and their methodological
analysis.



4.2. Selecting a data set for remapping

use

We use (1) the cross-validation data set and (2) the com-
bination of the training data set and the cross-validation
data set as the remapping data set. Our experimental re-
sults show that a remapping based on the cross-validation
data set is as good as that based on the combination of
the training data set and the cross-validation data set, and
even better if the computational cost is considered. A pos-
sible explanation for this result is that the patterns in the
training data set have been learned during training and are
ultimately reflected by the parameter values of the neural
network, but the cross-validation set is used to stop overfit-
ting and gives no additional contribution to the parameter
values via pattern-learning. Therefore, the patterns in the
cross-validation data set still contain new information that
will help in improving the estimation accuracy and general-
ization of the neural-network-based estimator by the remap-
ping process.

4.3. Remapping based on histograms

Our strategy is to find a simple function for each unit in
the network’s output layer that maps the unit’s output val-
ues to a more accurate estimate of the true probability. This
remapping is based on the histogram values described above,
computed on a cross-validation data set. We have tried sev-
eral methods of remapping based on histograms, including
doing regression on histogram data and then remapping us-
ing the regressive data. Finding new fitting methods is still
an active research topic. So far, among those remapping
methods, we have had our best results fitting the histogram
of each class with two lines in the following two areas:

1. In the interval [0.0,0.1], we use linear fitting based on
logarithmic scale — we get two parameters a and b;

2. In the interval (0.1, 1.0], we use linear fitting — we get
one parameter c.

The remapping requires only three parameter values (a,band
c) per class. After we get an output value y; (in Figure 2) of
the neural network, we can use the following transformation
function to get its remapped value g; (in Figure 2):

gi=axy, if yi<o0y

gi=cx*(yi —0.1)+ax0.1°,  otherwise (1)
Because each class requires only three parameter values for
remapping and the transformation function is very simple,
applying remapping during recognition has a negligible ef-
fect on the total computation time. We do remapping on
the classes that have smooth histograms. For example, we
can set up a threshold k, we do remapping on the classes
whose histograms contain more than k data points; other-
wise, we do not. If k is large, then the number of the remap-
ping classes is small. There is an optimal & that gives good
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Figure 3: An example histogram

balance. The dashed and dotted curves in Figure 3 show the
fitting curve for one output of our network.
4.4. Posterior

Estimating Bayesian

Probabilities

The Bayesian posterior probabilities are estimated using a
weighted linear combination of both the network outputs
(yi) and the remapped outputs (¢:).

Because the network outputs and the remapped network
outputs may contain different information coming from the
training data set and the combination of the training data set
and a cross-validation data set, separately, we weight them
to get new estimates based on the network outputs and their
remapped values.

If we use o (0 < a < 1) to represent the weight of a network
output y;, then the weight of its corresponding remapped
output 7; is 1 — a. Therefore the output value &; of our
empirical probability estimation model with neural networks
can be calculated as:

0i = a*yi + (1 — ) * Gi(wi), 0<a<1l (2)
Let 5{6\, :i=1,---, M} denote the estimated output vec-

tor. We tune weight o to get different empirical probability
estimator. This weighting process can be shown in Figure 4.

From no remapping to remapping, we only remodeled the
phoneme probability estimator using histogram remapping,
with other experimental conditions unchanged. Therefore,
the increase in recognition accuracy at the utterance level



o
Neural network Estimati .
imation vector
Vit - M) of Bayesian posterior
w probabilities
1-o A A
Remapping 0{0;:1,..,M})
AN N\
Y {yi:1,..M})

Figure 4: Bayesian posterior probability estimation based
on weighting the network outputs and the remapped outputs

a 1.0 2/3 1/2 0.0
94.7% | 95.3% | 95.0% | 94.3%

Lerror reduction | - 11.3% | 5.7% - l

accuracy

Table 1: Utterance-level recognition results on OGI Census
Year corpus (doing evaluation on a cross-validation set).

reflects the improvement in the estimation accuracy of the
Bayesian posterior probabilities.

We use a cross-validation data set (300 utterances) to do
remapping and also use it to choose k and a. We get the
optimal k which is 15. With this optimal value of k, almost
half of the classes (49%) are not remapped. Table 1 shows
the recognition results of the OGI Census Year corpus at the
utterance level, including the recognition accuracies and the
corresponding error reduction rates.

In Table 1, column 2 shows the result (94.7%) when we use
network outputs directly as the estimation values of Bayesian
posterior probabilities (& = 1.0); column 3 shows the result
(95.3%) when we set a = 2/3; column 4 shows the result
(95.0%) when we set @ = 1/2; column 5 shows the result
(94.3%) when we use the remapped outputs only as the es-
timation value of Bayesian posterior probabilities (o = 0.0).
These results show that remapping can work effectively in
increasing the speech recognition accuracy and that we can
tune a to get an optimal probability estimator. The selec-
tion of « is related with the representative quality of neural
networks (for example, generality) and the histogram effects
(for example, smoothness of the histograms) of the remap-
ping. From Table 1 we get the optimal o value which is
2/3.

Setting o to be 2/3, we then use the test data set (containing
734 utterances) to do evaluation; our experimental results
are shown in Table 2.

As shown in Table 2, this optimal probability estimator
(o = 2/3) resulted in a 20.6% reduction in recognition er-
rors at the utterance level. Using McNemar’s test [3], the
significance level of this improvement is 2.2%, which means
that the reduction in the error rate is statistically significant.
This result shows that remapping is effective in increasing the

a 1.0 2/3
93.7% | 95.0%

I error reduction [ - I 20.6% I

recognition accuracy

Table 2: Utterance-level recognition results on OGI Census
Year corpus (doing evaluation on the test set).

estimation accuracy of Bayesian posterior probabilities and
thereby the speech recognition accuracy.

5. Conclusions

In practice, speech data generally have different prior class
probabilities and different likelihood distributions. The
classes that have very few or even no samples are poorly
trained during the neural network training process. Con-
strained by limited training data and network complexity,
neural network outputs may not provide accurate estima-
tion of Bayesian posterior probabilities. Unfortunately, we
are also unable to remap those classes due to insufficient
data. Our further work includes finding an effective way to
deal with the remapping of the sparse classes that have few
training samples and increasing the number of remapping
classes. Compared to a single neural network estimator, a
probability estimator combining neural-network-output es-
timation with empirical probability estimation is promising
in increasing the estimation accuracy of Bayesian posterior
probabilities and thereby improving speech recognition ac-
curacy.
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