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ABSTRACT

It is well known that the LSP coefficient which represents the
speech spectrum envelope as one of the linear prediction co-
efficients, shows a good performance of spectral interpolation
along the time axis, but it is also known that the duration
of interpolation is limited up to 20 ~ 30 ms.

This limitation makes it difficult to reduce the bit rate in
very low bit rate speech coding. To resolve this problem, re-
current neural networks (RNN) were applied to interpolate
LSP coefficients, and it was possible to increase the duration
of interpolation to about 100 ms without so much degrada-
tion of the synthesized speech quality.

1. INTRODUCTION

An RNN has asymmetrical weighting coefficients among the
units, and a time delay at each unit. Thus, an RNN is ex-
pected to be able to memorize or restore time-varying pat-
terns. In this paper, a new spectral interpolation method
using RNNs is proposed as an application of an RNN to
speech coding; its training method is also proposed.

Itis well known that speech spectral patterns are represented
by linear predictive coefficients. Among some types of lin-
ear predictive coefficients, the LSP coefficients show a good
performance of spectral interpolation along the time axis. In
most cases, linear interpolation has been used because of its
convenience, but the duration of interpolation is limited up
to 20 ~ 30 ms.

Thus, we introduce a new interpolation method using RNNs
which enables interpolation of LSP coefficients with long
time duration (about 100 ms). This method can be ap-
plied to very low bit rate speech spectral coding directly. In
the experiments in this paper. LSP coefficients were sparsely
sampled (segmented), coded, and interpolated by various in-
terpolation methods including the proposed method. These
methods were compared based on the spectral distortion in
the restored LSP coefficients.
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Figure 1: Recurrent neural network.

2. RNN INTERPOLATOR AND ITS
TRAINING METHOD

2.1. RNN interpolator

The RNYN used in this paper is an asymmetrically and fully
connected type, and each unit constituting the RNN has
a time delay element at the output. Figure 1 shows the
structure of the RNN. The operation of the RNX is denoted
by Eq.(1),

Yl(t) = Gl(-x’x(t))
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X, (t+1) = Z W, Y, (1) + E Vi Si(t)
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where X;(t), Yi(t), and S(t) denote the ith unit’s potential,
output, and input. respectively. G; is an output function,
and W,(1) and Vix(t) are weighting coefficients.

The signal to be interpolated is sparsely sampled, and its val-
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Figure 2: Interpolation by RNN.

ues at the sampling time are linearly interpolated, resulting
in the input signal to the RNN. This input signal is shown
in Fig.2 as a dotted line and expressed by Eq.(2),
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If the RNN is trained by the proposed method as explained
in the following section, the signal is restored so that it is
nearly the same as the original signal. by applying Si(t) of
the Eq.(2). The interpolator using an RNN is termed an
RNN interpolator.

The interpolation method using RNN has the following ad-
vantages.

(1) The RNN interpolator is able to interpolate sparsely
sampled coefficients with lower distortion compared
with linear or spline interpolation.

(2) After the training of the RNN, sub-optimal interpola-
tion to an original signal can be made without statistical
or mathematical modeling of the original signal.

2.2, Training of RNN

In order for an RNN to operate as an interpolator, some
training method must be used so as to make the RNN output
closer to the original input signal. The RNN interpolator
must interpolate multiple input patterns, and so the training
method must make an RNN interpolator whose interpolation
error is sufficiently small for multiple input patterns. As a
method of training an RNN for only one teacher pattern, the
BPTT (Back Propagation Through Time ) method [1][2] is

often used, which is a simple extension of the ordinary BP
method to the time domain.

In the BPTT method, the weighting coefficients between the
units constituting the RNN is adjusted so as to minimize the
square error of Eq.(3),

E=%/2Z(Y;(U—Q«(1))2dt (3)
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where Q.(t) represents the teacher signal and O means the
set of output units.

Adjustment of the weighting coefficients is done by the steep-
est descent method; its amount, AW, is represented by

Eq.(4),

AW, =—nZP,(t)Y,(t) (4)
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In Eq.(4), Pi(1) is "the back propagation value through
time,” which is represented by Eq.(5),

P(t—1) Z Py()WG(Xi(1))
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(3)

By using the BPTT method, a single RNN can be trained,
the error of which is locally minimized for a single pattern
[5]. However an RNN for multiple teacher patterns cannot
trained using this method, because the error does not always
converge. Thus in this paper, a new algorithm which can
train plural RNNs for multiple teacher patterns is proposed.
This method is termed the BPSS (Bach Propagation with
Selective Study) method.

BPSS method

The BPSS method incorpolates the BPTT method, and a
pre-clustering of teacher signals is adopted before commence-
ment of BPTT to avoid explosion of the error and to achieve
lower interpolation error. The algorithm of the BPSS is
shown in Fig. 3, and explained below.

2.3.

(1) Firstly, choose a teacher signal randomly from the entire
of teacher signals defined by Q, and make it an element
of the set Q*.

(2) Execute BPTT training on an RNN using teacher sig-
nals in Q*. Adjustment of weighting is done once by
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Figure 3: BPSS training method.

one teacher signal sequentially. As the initial condition,
the potentials of hidden units are reset to zero and the
outputs are set to the first values of the teacher signal.

(3) Make input signals corresponding to all the teacher sig-
nals in Q and input them to the above-trained RNN.
Observe the interpolation errors and select teacher sig-
nals whose interpolation error is lower than a threshold
value, and replace the element of Q* by them. The
teacher signals which are not selected here makes the
set 7, that is,

e=¢*(e (6)

(4) Repeat steps (2) and (3) until the elements of Q% are
fixed, or the number of repetition reaches the limit.
Then, save the weighting coefficients, W, and Vi, for
the RNN interpolator corresponding to Q.

(3) Replace Q by Q~, prepare a new RNN, and repeat
(1) ~ (4) until Q becomes empty or the number of
RNN interpolators reaches the limit.

In the proposed method. an error explosion in BPTT study is
prevented by clustering teacher signals. The teacher signals
in the cluster can be interpolated by a single RN interpola-
tor with lower interpolation error than the threshold. So. the
interpolation errors and the number of created RNNs depend

on the threshold and it must be determined experimentally

(3]

In the interpolation process, an input pattern is applied to
all RNNs to find the best RNN interpolator, the output of
which is the signal closest to the original one, by full search.

3. INTERPOLATION AND CODING
OF LSP

3.1. Segmentation

In this subsection, the method of making teacher and in-
put signals for the RNN interpolator from a pattern of LSP
coefficients which continuously varies with time is explained.

(1) Calculate the dynamic scale defined by Eq.(7),

P
D(t) = 10logso Z a3(t) (7

=1

where a;(t) is the local gradient of LSP along time axis,
and p is the order of the LSP analysis.

(2) Search for the local peaks of D(t), and make them
D(tp,). D(1p,). D(tp,).. ..

(3) Search for the time when D(f) becomes minimum
between the times corresponding to D(tp,), D(tp,).
D(tp,). ... and denote it as t.;. That s,

ty, = argmin(D(t)|ty, <t < tp ). (8)

(4) Chop up the LSP coefficients at the time t., and make
teacher signals and input signals.

(5) Normalize the lengths of the teacher and input signals,
and subtract the mean values for each of the LSP or-
ders. These processes are required to improve the per-
formance of the RNN interpolator.

This segmentation method chops up the LSP coefficientsinto
patterns where they are stationary near the top of the seg-
ment, transient in the middle frames, and stationary near the
bottom. The reason why this method 1is adopted is that the
RNN interpolator shows a better performance near the top
and the bottom of the segments, and it can interpolate sta-
tionary periods of speech with lower distortion. This results
in good subjective quality of the synthesized speech.

3.2. Experiments of coding

Finally, the coding of LSP coefficients was carried out by
using the proposed interpolation method. For comparison,
linear interpolation, spline interpolation, and segment quan-
tization (SQ) were applied and the spectral distortions were
compared with that of the RNN interpolator. In order to in-
terpolate LSP coefficients at a receiver, the following values
must be coded and transmitted: the LSP coeflicients in the



Table 1: Bit allocation.

LSP order
13 4‘6 710
LINEAR |} 9bit | 9bit | Tbit
SPLINE 9bit | 9bit | That
SQ 9bit | 9bit | That
RNN Tbit | Tbit | 6bit

RNN Index = 5bit, Signal length = ibit

Table 2: Experimental condition.

Sampling freq. 8kHz
LSP analysis window 32ms
LSP analysis period 4ms
LSP order 10
RNN input/output units 10
RNYN hidden units 30
Output function tanh

Table 3: Spectral distortion.

CD[dB] | bit rate
LINEAR || 3.855 | 287bps
SPLINE 4.438 287bps
5Q 3653 | 287bps
RNN 3.365 | 287bps

top or the bottom frame of the input signal, the index of the
RNN interpolator to be used, and the length of the original
signal. The bit allocation to these parameters are listed in
Table 1. For the length of the original signal, 7 bits were al-
located in all methods. The LSP coefficients were split into
three vectors and coded by split-VQ [4]. The RNN interpo-
lation requires additional information about which RNN is
to be used. In order to share 5 bits for this and to make the
total bits equal in all the methods, the bits for the split-VQ
were decreased in the proposed method. The other experi-
mental conditions are shown in Table 2.

Then the spectral distortions of the LSP coefficients after
coding and interpolation were measured and compared. The
final results are shown in Table 3. This test was carried
out for the data outside the training data. The RNN in-
terpolation method achieved lower spectral distortion than
the other methods by about 0.5dB and the mean duration
of interpolation was more than 100ms.

The bit rate shown in Table 3 is only for coding the LSP
coefficients, which does not include the residual information.
Using the restored LSP coefficients, speech signals were syn-
thesized where the raw residual signals were used as the exci-
tation signal. An informal listening test showed a perceived
improvement of quality in comparison with the other meth-
ods although there was some degradation compared with the
original signal.

4. CONCLUSION

An RNN interpolator was newly proposed with its training
method for multiple input patterns. Then it was applied to
the interpolation of spasely sampled LSP coefficients, where
the sampling period was more than 100ms. Simulation of
coding was carried out, and the proposed method outper-
formed the other interpolation methods, below the bit rate
of 300bps.

The LSP coefficients interpolated by the RNN interpolators
were well restored and showed a lower spectral distortion
than the other interpolation methods. The training method
introduced here is a sub-optimal method, and it may be pos-
sible to slightly improve the obtained RNNs’ interpolation
error.
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